• Title/Summary/Keyword: $AlCeO_3$

Search Result 217, Processing Time 0.026 seconds

A Study on Fe ions in the $\textrm{CdFe}_2\textrm{O}_4$ and $\textrm{CdFeAlO}_4$ by Mossbauer Spectroscopy (Mossbauer분광법을 이용한 $\textrm{CdFe}_2\textrm{O}_4$$\textrm{CdFeAlO}_4$의 Fe 이온에 관한 연구)

  • Baek, Seung-Do;Go, Jeong-Dae
    • Korean Journal of Materials Research
    • /
    • v.9 no.4
    • /
    • pp.345-348
    • /
    • 1999
  • The properties of Fe ions in the $ CdFe_2$$O_4$ and $CdFeAlO_4$ were investigated using the Mossbauer spectroscopy, in the temperature range from 300K to 900K. The calculated Debye temperature, recoil free fraction, mean square displacement and velocity are, 476.5K, 0.835, 3.39$\times$10\ulcorner$\textrm{cm}^2$, and 1.11$\times$10\ulcorner$\textrm{cm}^2$sec$^2$for Fe ions in the $CdFe_2$$O_4$ and 369.0K, 0.741, 5.65$\times$10\ulcorner$\textrm{cm}^2$ and 1.33$\times$10\ulcorner$\textrm{cm}^2$/$sec^2$in the $CeFeAlO_4$. The difference of the properties in the two samples were explained by the variation of the Fe\ulcorner-O\ulcorner bonding length with the substituted Al ions.

  • PDF

Optimization of Supported Pt Catalysts for Single Stage Water Gas Shift Reaction (일단 WGS반응용 백금 담지 촉매 최적화)

  • Kim, Ki-Sun;Jeong, Dae-Woon;Koo, Kee Young;Yoon, Wang Lai;Roh, Hyun-Seog
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.156.2-156.2
    • /
    • 2011
  • 본 연구에서는 일단 수성가스전이반응 (Single stage water gas shift reaction)을 위해 높은 활성을 가진 백금 담지 촉매를 함침법 (Incipient wetness impregnation method)으로 제조하여 높은 공간 속도 (Gas hourly space velocity) $45,515h^{-1}$에서 담체에 따른 촉매 활성을 평가하였다. 담체는 $CeO_2$, $ZrO_2$, MgO, MgO-$Al_2O_3$ (MgO = 30 wt%) 그리고 $Al_2O_3$를 사용하였으며 백금의 담지량은 1 wt%로 고정하였다. BET, XRD, TPR, CO-chemisorption 분석을 통하여 담체의 구조적 특성이 촉매 활성에 미치는 영향에 대하여 조사하였다.

  • PDF

High Strength Nanostructured Metastable Alloys

  • Eckert, Jurgen;Bartusch, Birgit;Schurack, Frank;He, Guo;Schultz, Ludwig
    • Journal of Powder Materials
    • /
    • v.9 no.6
    • /
    • pp.394-408
    • /
    • 2002
  • Nanostructured high strength metastable Al-, Mg- and Ti-based alloys containing different amorphous, quasicrystalline and nanocrystalline phases are synthesized by non-equilibrium processing techniques. Such alloys can be prepared by quenching from the melt or by powder metallurgy techniques. This paper focuses on one hand on mechanically alloyed and ball milled powders containing different volume fractions of amorphous or nano-(quasi)crystalline phases, consolidated bulk specimens and, on the other hand. on cast specimens containing different constituent phases with different length-scale. As one example. $Mg_{55}Y_{15}Cu_{30}$- based metallic glass matrix composites are produced by mechanical alloying of elemental powder mixtures containing up to 30 vol.% $Y_2O_3$ particles. The comparison with the particle-free metallic glass reveals that the nanosized second phase oxide particles do not significantly affect the glass-forming ability upon mechanical alloying despite some limited particle dissolution. A supercooled liquid region with an extension of about 50 K can be maintained in the presence of the oxides. The distinct viscosity decrease in the supercooled liquid regime allows to consolidate the powders into bulk samples by uniaxial hot pressing. The $Y_2O_3$ additions increase the mechanical strength of the composites compared to the $Mg_{55}Y_{15}Cu_{30}$ metallic glass. The second example deals with Al-Mn-Ce and Al-Cu-Fe composites with quasicrystalline particles as reinforcements, which are prepared by quenching from the melt and by powder metallurgy. $Al_{98-x}Mn_xCe_2$ (x =5,6,7) melt-spun ribbons containing a major quasicrystalline phase coexisting with an Al-matrix on a nanometer scale are pulverized by ball milling. The powders are consolidated by hot extrusion. Grain growth during consolidation causes the formation of a micrometer-scale microstructure. Mechanical alloying of $Al_{63}Cu_{25}Fe_{12}$ leads to single-phase quasicrystalline powders. which are blended with different volume fractions of pure Al-powder and hot extruded forming $Al_{100-x}$$(Al_{0.63}Cu_{0.25}Fe_{0.12})_x$ (x = 40,50,60,80) micrometer-scale composites. Compression test data reveal a high yield strength of ${\sigma}_y{\geq}$700 MPa and a ductility of ${\varepsilon}_{pl}{\geq}$5% for than the Al-Mn-Ce bulk samples. The strength level of the Al-Cu-Fe alloys is ${\sigma}_y{\leq}$550 MPa significantly lower. By the addition of different amounts of aluminum, the mechanical properties can be tuned to a wide range. Finally, a bulk metallic glass-forming Ti-Cu-Ni-Sn alloy with in situ formed composite microstructure prepared by both centrifugal and injection casting presents more than 6% plastic strain under compressive stress at room temperature. The in situ formed composite contains dendritic hcp Ti solid solution precipitates and a few $Ti_3Sn,\;{\beta}$-(Cu, Sn) grains dispersed in a glassy matrix. The composite micro- structure can avoid the development of the highly localized shear bands typical for the room temperature defor-mation of monolithic glasses. Instead, widely developed shear bands with evident protuberance are observed. resulting in significant yielding and homogeneous plastic deformation over the entire sample.

An SOFC Cathode Composed of LaNi0.6Fe0.4O3 and Ce(Ln)O2 (Ln=Sm, Gd, Pr)

  • Chiba, Reiichi;Komatsu, Takeshi;Orui, Himeko;Taguchi, Hiroaki;Nazawa, Kazuhiko;Arai, Hajime
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.12
    • /
    • pp.766-771
    • /
    • 2008
  • We fabricated single cells with a cathode consisting of a $LaNi_{0.6}Fe_{0.4}O_3-Ce_{0.8}Sm_{0.2}O_{1.9}$ composite (LNF-S20DC composite) active layer and an LNF current collecting layer on a ${0.89ZrO_2}-{0.10Sc_2}{O_3}-0.01{Al_2}{O_3}$ electrolyte sheet. The cathode layers were prepared by the screen-printing method. The cathode properties of these cells were measured by the AC impedance method at $800^{\circ}C$. The cathodes with the ceria-LNF composite active layer exhibited high power performance prior to current loading. We investigated the influence of the mixture ratio of LNF and S20DC on the cathodes properties. The Sm in the ceria particles of the composite cathode was substituted with other rare-earth elements. Cathodes with Pr and Gd co-doped ceria in the active layer provided the better performance than those with Sm- or Gd-doped ceria.

Geochemistry and Mineralogy of Metapelite and Barium-Vanadium Muscovite from the Ogcheon Supergroup of the Deokpyeong Area, Korea (덕평지역(德平地域)의 옥천누층군(沃川累層群)에 분포(分布)하는 변성이질암(變成泥質岩)과 바륨-바나듐 백운모(白雲母)의 지구화학적(地球化學的) 및 광물학적(鑛物學的) 특성(特性))

  • Lee, Chan Hee;Lee, Hyun Koo
    • Economic and Environmental Geology
    • /
    • v.30 no.1
    • /
    • pp.35-49
    • /
    • 1997
  • The coal formation of the Deokpyeong area are interbedded along metapelites of the Ogcheon Supergroup, which are composed mainly of graphite, quartz, muscovite and associated with small amounts of biotite, chlorite, pyrite and barite. The ratios of $SiO_2/Al_2O_3$, $Al_2O_3/Na_2O$ and $K_2O/Na_2O$ of the coaly metapelite are variable and wide range from 1.80 to 10.21, from 27.8 to 388.8 and from 7.6 to 61.8, respectively. These coal formation were deposited in basin of marine environments, and the REE of these rocks are not influenced with metamorphism and hydrothermal alterations on the basis of $Al_2O_3$ versus La, La against Ce, the ratios of La/Ce (0.19 to 0.99) and Th/U (0.02 to 4.75). These rocks also show much variation in $La_N/Yb_N$ (1.19 to 22.89), Th/Yb (0.14 to 21.43) and La/Th (0.44 to 13.67), and their origin is explained by derivation from a mixture of sedimentary and igneous rocks. The wide range in trace and REE element characteristics as Co/Th (0.12 to 2.78), La/Sc (0.33 to 10.18), Sc/Th (0.57 to 5.73), V/Ni (8 to 2347), Cr/V (0.02 to 0.67) and Ni/Co (1.56 to 32.95) of these coaly metapelites argues for inefficient mixing of the various source lithologies during sedimentation. Deep to pale green barium-vanadium muscovites (vanadium-oellacherite) have been found in this coal formations. Modes of occurrence and grain size of muscovite are heterogeneous, but most of the barium and vanadium-bearing muscovites occur along the boundaries between graphite and quartz grains, ranging from 200 to $350{\mu}m$ in length and from 40 to $60{\mu}m$ in width. Results of X-ray diffraction data of the minerals characterized to be monoclinic system with $a=5.249{\AA}$, $b=8.939{\AA}$, $c=20.924{\AA}$ and ${\beta}=95.894^{\circ}$. Representative chemical formula of the muscovite was $(Na_{0.09}K_{1.44}Ba_{0.46})(Al_{2.75}Ti_{0.07}V_{0.56}Fe_{0.08}Mg_{0.50})(Si_{6.12}Al_{1.88})O_{22}$. The V possibly substitute octahedral Al, and the Ba is coupled substitution of $K^+Si^{4+}=Ba^{2+}Na^+Ca^{2+}$, which compositional ranges of V and Ba are from 0.42 to 0.69 and from 0.34 to 0.56 based on $O_{22}$, respectively. Formation mechanism of the barium-vanadium muscovites in the coaly metapelite is shown that the formed by high pressure and temperature from regional metamorphism origanated during diagenesis at the interface between a basinal brine and organic matter.

  • PDF

Towards effective indirect radioisotope energy converters with bright and radiation hard scintillators of (Gd,Y)3Al2Ga3O12 family

  • Korzhik, M.;Abashev, R.;Fedorov, A.;Dosovitskiy, G.;Gordienko, E.;Kamenskikh, I.;Kazlou, D.;Kuznecova, D.;Mechinsky, V.;Pustovarov, V.;Retivov, V.;Vasil'ev, A.
    • Nuclear Engineering and Technology
    • /
    • v.54 no.7
    • /
    • pp.2579-2585
    • /
    • 2022
  • Ceramics of quaternary garnets (Gd,Y)3Al2Ga3O12 doped with Ce, Tb have been fabricated and evaluated as prospective materials for indirect energy converters of α-and β-voltaic. Samples were characterized at excitation with an X-ray source and an intense 150 keV electron beam and showed good temperature stability of their emission and tolerance to irradiation. The role of X-rays accompanied the α-particle emitting in the increase of the conversion efficiency is clarified. The garnet-type structure of the matrix in the developed materials allows the production of quality crystalline mass with a light yield exceeding that of the commonly used YAG: Ce scintillator by a factor of two times.

Decomposition of Toluene over Transition Metal Oxide Catalysts (전이금속 산화물 촉매를 이용한 톨루엔 분해)

  • Cheon, Tae-Jin;Choi, Sung-Woo;Lee, Chang-Seop
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.6
    • /
    • pp.651-656
    • /
    • 2005
  • Toluene, which is emitted from textile process, is considered as an important hazardous air pollutant. In this study, the catalytic activity of transition metal oxides(Cu, Mn, V, Cr, Co, Ni, Ce, Sn, Fe, Sr, Cs, Mo, La, W, Zn)/${\gamma}-Al_2O_3$ catalysts was investigated to carry out the complete oxidation of toluene. The metal catalysts were characterized by XRD-ray diffraction), FE-SEM(Field Emission Scanning Electron Micrograph), BET(Brunauer Emmett Teller) method and TPR(Temperature Programmed Reduction). Among the catalysts, Cu/${\gamma}-Al_2O_3$ was highly promising catalyst for the oxidation of toluene. From the BET results, it seems that the catalytic activity is not correlated to the specific surface area. XRD results indicated that most of catalysts exist as amorphous phase. From the FE-SEM results, it was observed that copper on ${\gamma}-Al_2O_3$ surface was well dispersed among catalysts. The catalytic activity for the toluene oxidation could be explained with that metal oxide catalyst was dispersed well over supports and was attributed to reduction activity in surface of catalysts.

Manufacturing Optimization of Ni Based Disk Type Catalyst for CO2 Methanation (CO2 메탄화 반응을 위한 Ni 기반 Disk Type 촉매의 제조 최적화에 관한 연구)

  • Lee, Jae-Joung;Moon, Dea-Hyun;Chang, Soon-Wong
    • Journal of Environmental Science International
    • /
    • v.28 no.1
    • /
    • pp.65-73
    • /
    • 2019
  • The catalytic activity of Ni-0.2%YSZ (Yttria-Stabilized Zirconia) with different promoters was evaluated for $CO_2$ methanation. The catalysts were weighed for mixing and they were dried at $110^{\circ}C$ for molding into disks. The concentration of $CO_2$ and $CH_4$ for conducting of $CO_2$ methanation were analyzed by gas chromatography and the physical characteristics of the disk-type catalyst formed were analyzed by X-ray diffraction, scanning electron microscope and energy dispersive x-ray spectrometer. The addition of $CeO_2$ as a promoter for Ni-0.2%YSZ (denoted as Ni-5%Ce-0.2%YSZ) resulted in the highest $CO_2$ methanation. It also showed catalytic activity at a low temperature($200^{\circ}C$). Following this, $ZrO_2$, $SiO_2$, $Al_2O_3$ and $TiO_2$ were added to Ni-5%Ce-0.2%YSZ to compare the $CO_2$ methanation, and the highest efficiency was found for. Ni-1%Ti-5%Ce-0.2%YSZ Then, the concentration of Ti was increased to 10% and the catalytic activity was estimated using seven different types of commercial $TiO_2$. In conclusion, ST-01 $TiO_2$ showed the highest efficiency for $CO_2$ methanation.

Preparation of $CeO_2$ Based Solid Electrolyte Thin Films by Electrochemical Vapor Deposition (전기화학증착법에 의한 $CeO_2$계 고체전해질 박막의 제조)

  • 박동원;김대룡
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.10
    • /
    • pp.1067-1073
    • /
    • 1997
  • The yttria doped ceria (YDC) thin films were fabricated by electrochemical vapor deposition on the porous $\alpha$-Al2O3 substrate. The growth rates of the films obeyed a parabolic rate law, which constant was 259.0 $m^2$/hr at 120$0^{\circ}C$. As deposition temperature (above 110$0^{\circ}C$) increased, dense thin films were enhanced. Mole fraction of XYC13 had an effect upon surface morphologies. Electrical conductivity was increased with deposition temperature. The conductivity of YDC film prepared at XYC13=7.9$\times$10-2 was about 0.097 S/cm at 104$0^{\circ}C$ and the activation energy of conduction was calculated to be 26.6 kcal/mol.

  • PDF

Petrology and Geochemical Characteristics of A-type Granite with Particular Reference to the Namsan Granite, Kyeongju (경주 남산일대의 A-형 화강암의 암석학 및 지화학적 특성)

  • 고정선;윤성효;이상원
    • The Journal of the Petrological Society of Korea
    • /
    • v.5 no.2
    • /
    • pp.142-160
    • /
    • 1996
  • Petrological and geochemical characteristics of A-type granite were studied from the Namsan and Tohamsan granites in the vicinity of Kyeongju city, southeastern Korea. The Namsan granite consists of hypersolvus alkali-feldspar granite in the northern part and subsolvus alkali-feldspar to biotite granite in the southern part. This hypersolvus granite usually has miarolitic cavities and is characteristically composed of quartz, single homogeneous one-feldspar (alkali feldspar) forming tabular microperthite crystals, or micrographic intergrowth with quartz, and interstitial biotite (Fe-rich annite), alkali amphibole (riebeckitic arfvedsonite) and fluorite. Petrographic and petrochemical characteristics indicate that the hypersolvus granite and subsolvus granite from the Namsan belogn to the A-type and I-type granitoid, respectively. The A-type granite is petrochemically distinguished from the I-type Bulgugsa granites of Late Cretaceous in South Korea, by higher abundance of $SiO_2$, $Na_2O$, $Na_2O+K_2O$, large highly charged cations such as Rb, Nb, Y, Zr, Ga, Th, Ce. U the REEs and Ga/Al ratio, and lower abundance of $TiO_2$, $Al_2O_3$, CaO, $P_2O_5$, MnO, MgO, Ba, Sr, Eu. The total abundance of REEs is 293 ppm to 466 ppm, showing extensively fractionated granitic compositon, and REEs/chondrite normalized pattern shows flat form with strong Eu '-' anomaly ($Eu/Eu^{\ast}$=0.03-0.05). A-type granite from the Namsan area is thought to have been generated late in the magmatic/orogenic cycle after the production of I-type granite and by direct, high-temperature partial melting of melt-depleted, relatively dry tonalitic/granulitic lower crustal material with underplating by mantle-derived basaltic magmas associated with subduction.

  • PDF