• Title/Summary/Keyword: $A{\beta}1-42$

Search Result 631, Processing Time 0.037 seconds

Vaccinium uliginosum L. Improves Amyloid β Protein-Induced Learning and Memory Impairment in Alzheimer's Disease in Mice

  • Choi, Yoon-Hee;Kwon, Hyuck-Se;Shin, Se-Gye;Chung, Cha-Kwon
    • Preventive Nutrition and Food Science
    • /
    • v.19 no.4
    • /
    • pp.343-347
    • /
    • 2014
  • The present study investigated the effects of Vaccinium uliginosum L. (bilberry) on the learning and memory impairments induced by amyloid-${\beta}$ protein ($A{\beta}P$) 1-42. ICR Swiss mice were divided into 4 groups: the control ($A{\beta}40$-1A), control with 5% bilberry group ($A{\beta}40$-1B), amyloid ${\beta}$ protein 1-42 treated group ($A{\beta}1$-42A), and $A{\beta}1$-42 with 5% bilberry group ($A{\beta}1$-42B). The control was treated with amyloid ${\beta}$-protein 40-1 for placebo effect, and Alzheimer's disease (AD) group was treated with amyloid ${\beta}$-protein 1-42. Amyloid ${\beta}$-protein 1-42 was intracerebroventricular (ICV) micro injected into the hippocampus in 35% acetonitrile and 0.1% trifluoroacetic acid. Although bilberry added groups tended to decrease the finding time of hidden platform, no statistical significance was found. On the other hand, escape latencies of $A{\beta}P$ injected mice were extended compared to that of $A{\beta}40$-1. In the Probe test, bilberry added $A{\beta}1$-42B group showed a significant (P<0.05) increase of probe crossing frequency compared to $A{\beta}1$-42A. Administration of amyloid protein ($A{\beta}1$-42) decreased working memory compared to $A{\beta}40$-1 control group. In passive avoidance test, bilberry significantly (P<0.05) increased the time of staying in the lighted area compared to AD control. The results suggest that bilberry may help to improve memory and learning capability in chemically induced Alzheimer's disease in experimental animal models.

Protein Kinase C-mediated Neuroprotective Action of (-)-epigallocatechin-3-gallate against $A{\beta}_{1-42}$-induced Apoptotic Cell Death in SH-SY5Y Neuroblastoma Cells

  • Jang, Su-Jeong;You, Kyoung-Wan;Kim, Song-Hee;Park, Sung-Jun;Jeong, Han-Seong;Park, Jong-Seong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.11 no.5
    • /
    • pp.163-169
    • /
    • 2007
  • The neurotoxicity of amyloid $\beta(A\beta)$ is associated with an increased production of reactive oxygen species and apoptosis, and it has been implicated in the development of Alzheimer's disease. While(-)-epigallocatechin-3-gallate(EGCG) suppresses $A\beta$-induced apoptosis, the mechanisms underlying this process have yet to be completely clarified. This study was designed to investigate whether EGCG plays a neuroprotective role by activating cell survival system such as protein kinase C(PKC), extracellular-signal-related kinase(ERK), c-Jun N-terminal kinase(JNK), and anti-apoptotic and pro-apoptotic genes in SH-SY5Y human neuroblastoma cells. One ${\mu}M\;A{\beta}_{1-42}$ decreased cell viability, which was correlated with increased DNA fragmentation evidenced by DAPI staining. Pre-treatment of SH-SY5Y neuroblastoma cells with EGCG($1{\mu}M$) significantly attenuated $A{\beta}_{1-42}$-induced cytotoxicity. Potential cell signaling candidates involved in this neuroprotective effects were further examined. EGCG restored the reduced PKC, ERK, and JNK activities caused by $A{\beta}_{1-42}$ toxicity. In addition, gene expression analysis revealed that EGCG prevented both the $A{\beta}_{1-42}$-induced expression of a pro-apoptotic gene mRNA, Bad and Bax, and the decrease of an anti-apoptotic gene mRNA, Bcl-2 and Bcl-xl. These results suggest that the neuroprotective mechanism of EGCG against $A{\beta}_{1-42}$-induced apoptotic cell death includes stimulation of PKC, ERK, and JNK, and modulation of cell survival and death genes.

Thiolated Protein A-functionalized Bimetallic Surface Plasmon Resonance Chip for Enhanced Determination of Amyloid Beta 42

  • Kim, Hyung Jin;Kim, Chang-Duk;Sohn, Young-Soo
    • Applied Chemistry for Engineering
    • /
    • v.30 no.3
    • /
    • pp.379-383
    • /
    • 2019
  • The capability of detecting amyloid beta 42 ($A{\beta}42$), a biomarker of Alzheimer's disease, using a thiolated protein A-functionalized bimetallic surface plasmon resonance (SPR) chip was investigated. An optimized configuration of a bimetallic chip containing gold and silver was obtained through calculations in the intensity measurement mode. The surface of the SPR bimetallic chip was functionalized with thiolated protein A for the immobilization of $A{\beta}42$ antibody. The response of the thiolated protein A-functionalized bimetallic chip to $A{\beta}42$ in the concentration range of 50 to 1,000 pg/mL was linear. Compared to protein A without thiolation, the thiolated protein A resulted in greater sensitivity. Therefore, the thiolated protein A-functionalized bimetallic SPR chip can be used to detect very low concentrations of the biomarker for Alzheimer's disease.

Effects of Newly Synthesized Recombinant Human Amyloid-β Complexes and Poly-Amyloid-β Fibers on Cell Apoptosis and Cognitive Decline

  • Park, Soojin;Huh, Jae-Won;Eom, Taekil;Park, Naeun;Lee, Youngjeon;Kim, Ju-Sung;Kim, Sun-Uk;Shim, Insop;Lee, Sang-Rae;Kim, Ekyune
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.11
    • /
    • pp.2044-2051
    • /
    • 2017
  • The main pathological hallmark of Alzheimer's disease is the deposition of amyloid-beta ($A{\beta}$) peptides in the brain. $A{\beta}$ has been widely used to mimic several aspects of Alzheimer's disease. However, several characteristics of amyloid-induced Alzheimer's disease pathology are not well established, especially in mice. The present study aimed to develop a new Alzheimer's disease model by investigating how $A{\beta}$ can be effectively aggregated using prokaryotes and eukaryotes. To express the $A{\beta}42$ complex in HEK293 cells, we cloned the $A{\beta}42$ region in a tandem repeat and incorporated the resulting construct into a eukaryotic expression vector. Following transfection into HEK293 cells via lipofection, cell viability assay and western blotting analysis revealed that exogenous $A{\beta}42$ can induce cell death and apoptosis. In addition, recombinant His-tagged $A{\beta}42$ was successfully expressed in Escherichia coli BL21 (DE3) and not only readily formed $A{\beta}$ complexes, but also inhibited the proliferation of SH-SY5Y cells and E. coli. For in vivo testing, recombinant His-tagged $A{\beta}42$ solution ($3{\mu}g/{\mu}l$ in $1{\times}PBS$ containing $1mM\;Ni^{2+}$) was injected stereotaxically into the left and right lateral ventricles of the brains of C57BL/6J mice (n = 8). Control mice were injected with $1{\times}PBS$ containing $1mM\;Ni^{2+}$ following the same procedure. Ten days after the sample injection, the Morris water maze test confirmed that exogenous $A{\beta}$ caused an increase in memory loss. These findings demonstrated that $Ni^{2+}$ is capable of complexing the 50-kDa amyloid and that intracerebroventricular injection of $A{\beta}42$ can lead to cognitive impairment, thereby providing improved Alzheimer's disease models.

Functional Defects of Hb Kempsey (${\beta}99Asp{\rightarrow}Asn$) Can be Compensated by Insertion of a New Intersubunit Hydrogen Bond at the ${\alpha}_1{\beta}_2$ Subunit Interface

  • Yeh, Byung-Il;Choi, Jong-Whan;Sohn, Joon-Hyung;Lee, Hyean-Woo;Han, Dong-Pyou;Jung, Seun-Ho;Kim, Hyun-Won
    • BMB Reports
    • /
    • v.31 no.6
    • /
    • pp.590-594
    • /
    • 1998
  • X-ray crystallographic studies of the deoxy form of human adult hemoglobin (Hb A) have shown that ${\beta}99Asp$ is hydrogen bonded to both ${\alpha}42Tyr$ and ${\alpha}97Asn$ in the ${\alpha}_1{\beta}_2$ subunit interface, suggesting that the essential role of ${\beta}99Asp$ is to stabilize the deoxy-Hb by creating the intersubunit hydrogen bond. In particular, for Hb Kempsey (${\beta}99Asp{\rightarrow}Asn$), molecular dynamics simulation indicated that a new hydrogen bond involving ${\beta}99Asn$ can be induced by replacing ${\alpha}42Tyr$ with a strong hydrogen-bond acceptor such as Asp. Designed mutant recombinant (r) Hb (${\beta}99Asp{\rightarrow}Asn$, ${\alpha}42Tyr{\rightarrow}Asp$) have been produced in the Escherichia coli expression system and have shown that functional defects of Hb Kempsey could be compensated by the ${\alpha}42Tyr{\rightarrow}Asp$ substitution. However, as the ${\alpha}42 Tyr{\rightarrow}Asp$ mutation has never been reported before, it is still possible that the functional properties of r Hb (${\beta}99Asp{\rightarrow}Asn$, ${\alpha}42Tyr{\rightarrow}Asp$) may be due to the mutation itself. Thus, it is required to produce r Hb (${\alpha}42Tyr{\rightarrow}Asp$) and r Hb Kempsey (${\beta}99Asp{\rightarrow}AsnX$( as controls, and to compare their properties with those of r Hb (${\beta}99Asp{\rightarrow}Asn$, ${\alpha}42Tyr{\rightarrow}Asp$). r Hb (${\alpha}42Tyr{\rightarrow}Asp$) could not be purified because it is an unstable hemoglobin which forms Heinz bodies. r Hb Kempsey (${\beta}99Asp{\rightarrow}Asn$) exhibits very high oxygen affinity and greatly reduced cooperativity. Thus, r Hb (${\beta}99Asp{\rightarrow}Asn$) and r Hb (${\alpha}42Tyr{\rightarrow}Asp)$ compensate each other.

  • PDF

Protective effects of Acanthopanax divaricatus extract in mouse models of Alzheimer's disease

  • Yan, Ji-Jing;Ahn, Won-Gyun;Jung, Jun-Sub;Kim, Hee-Sung;Hasan, Md. Ashraful;Song, Dong-Keun
    • Nutrition Research and Practice
    • /
    • v.8 no.4
    • /
    • pp.386-390
    • /
    • 2014
  • BACKGROUND: Acanthopanax divaricatus var. albeofructus (ADA) extract has been reported to have anti-oxidant, immunomodulatory, and anti-mutagenic activity. MATERIALS/METHODS: We investigated the effects of ADA extract on two mouse models of Alzheimer's disease (AD); intracerebroventricular injection of ${\beta}$-amyloid peptide ($A{\beta}$) and amyloid precursor protein/presenilin 1 (APP/PS1)-transgenic mice. RESULTS: Intra-gastric administration of ADA stem extract (0.25 g/kg, every 12 hrs started from one day prior to injection of $A{\beta}1$-42 until evaluation) effectively blocked $A{\beta}1$-42-induced impairment in passive avoidance performance, and $A{\beta}1$-42-induced increase in immunoreactivities of glial fibrillary acidic protein and interleukin (IL)-$1{\alpha}$ in the hippocampus. In addition, it alleviated the $A{\beta}1$-42-induced decrease in acetylcholine and increase in malondialdehyde levels in the cortex. In APP/PS1-transgenic mice, chronic oral administration of ADA stem extract (0.1 or 0.5 g/kg/day for six months from the age of six to 12 months) resulted in significantly enhanced performance of the novel-object recognition task, and reduced amyloid deposition and IL-$1{\beta}$ in the brain. CONCLUSIONS: The results of this study suggest that ADA stem extract may be useful for prevention and treatment of AD.

Adzuki bean (Vigna angularis) extract reduces amyloid-β aggregation and delays cognitive impairment in Drosophila models of Alzheimer's disease

  • Miyazaki, Honami;Okamoto, Yoko;Motoi, Aya;Watanabe, Takafumi;Katayama, Shigeru;Kawahara, Sei-ichi;Makabe, Hidefumi;Fujii, Hiroshi;Yonekura, Shinichi
    • Nutrition Research and Practice
    • /
    • v.13 no.1
    • /
    • pp.64-69
    • /
    • 2019
  • BACKGROUND/OBJECTIVES: Alzheimer's disease is a neurodegenerative disease that induces symptoms such as a decrease in motor function and cognitive impairment. Increases in the aggregation and deposition of amyloid beta protein ($A{\beta}$) in the brain may be closely correlated with the development of Alzheimer's disease. In this study, the effects of an adzuki bean extract on the aggregation of $A{\beta}$ were examined; moreover, the anti-Alzheimer's activity of the adzuki extract was examined. MATERIALS/METHODS: First, we undertook thioflavin T (ThT) fluorescence analysis and transmission electron microscopy (TEM) to evaluate the effect of an adzuki bean extract on $A{\beta}_{42}$ aggregation. To evaluate the effects of the adzuki extract on the symptoms of Alzheimer's disease in vivo, $A{\beta}_{42}$-overexpressing Drosophila were used. In these flies, overexpression of $A{\beta}_{42}$ induced the formation of $A{\beta}_{42}$ aggregates in the brain, decreased motor function, and resulted in cognitive impairment. RESULTS: Based on the results obtained by ThT fluorescence assays and TEM, the adzuki bean extract inhibited the formation of $A{\beta}_{42}$ aggregates in a concentration-dependent manner. When $A{\beta}_{42}$-overexpressing flies were fed regular medium containing adzuki extract, the $A{\beta}_{42}$ level in the brain was significantly lower than that in the group fed regular medium only. Furthermore, suppression of the decrease in motor function, suppression of cognitive impairment, and improvement in lifespan were observed in $A{\beta}_{42}$-overexpressing flies fed regular medium with adzuki extract. CONCLUSIONS: The results reveal the delaying effects of an adzuki bean extract on the progression of Alzheimer's disease and provide useful information for identifying novel prevention treatments for Alzheimer's disease.

Polyphenolic Biflavonoids Inhibit Amyloid-Beta Fibrillation and Disaggregate Preformed Amyloid-Beta Fibrils

  • Choi, Erika Y.;Kang, Sam Sik;Lee, Sang Kook;Han, Byung Hee
    • Biomolecules & Therapeutics
    • /
    • v.28 no.2
    • /
    • pp.145-151
    • /
    • 2020
  • Alzheimer's disease (AD) is a devastating neurodegenerative disease and a major cause of dementia in elderly individuals worldwide. Increased deposition of insoluble amyloid β (Aβ) fibrils in the brain is thought be a key neuropathological hallmark of AD. Many recent studies show that natural products such as polyphenolic flavonoids inhibit the formation of insoluble Aβ fibrils and/or destabilize β-sheet-rich Aβ fibrils to form non-cytotoxic aggregates. In the present study, we explored the structure-activity relationship of naturally-occurring biflavonoids on Aβ amyloidogenesis utilizing an in vitro thioflavin T assay with Aβ1-42 peptide which is prone to aggregate more rapidly to fibrils than Aβ1-40 peptide. Among the biflavonoids we tested, we found amentoflavone revealed the most potent effects on inhibiting Aβ1-42 fibrillization (IC50: 0.26 µM), as well as on disassembling preformed Aβ1-42 fibrils (EC50: 0.59 µM). Our structure-activity relationship study suggests that the hydroxyl groups of biflavonoid compounds play an essential role in their molecular interaction with the dynamic process of Aβ1-42 fibrillization. Our atomic force microscopic imaging analysis demonstrates that amentoflavone directly disrupts the fibrillar structure of preformed Aβ1-42 fibrils, resulting in conversion of those fibrils to amorphous Aβ1-42 aggregates. These results indicate that amentoflavone affords the most potent anti-amyloidogenic effects on both inhibition of Aβ1-42 fibrillization and disaggregation of preformed mature Aβ1-42 fibrils.

COMPARISON FOR SOLUTIONS OF A SPDE DRIVEN BY MARTINGALE MEASURE

  • CHO, NHAN-SOOK
    • Bulletin of the Korean Mathematical Society
    • /
    • v.42 no.2
    • /
    • pp.231-244
    • /
    • 2005
  • We derive a comparison theorem for solutions of the following stochastic partial differential equations in a Hilbert space H. $$Lu^i=\alpha(u^i)M(t,\; x)+\beta^i(u^i),\;for\;i=1,\;2,$$ $where\;Lu^i=\;\frac{\partial u^i}{\partial t}\;-\;Au^{i}$, A is a linear closed operator on Hand M(t, x) is a spatially homogeneous Gaussian noise with covariance of a certain form. We are going to show that if $\beta^1\leq\beta^2\;then\;u^1{\leq}u^2$ under some conditions.

Fructus Corni Officinalis water extract Ameliorates Memory Impairment and Beta amyloid (Aβ) clearance by LRP-1 Expression in the Hippocampus of a Rat model of Alzheimer’s Disease

  • Lee, Ju Won
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.30 no.5
    • /
    • pp.347-354
    • /
    • 2016
  • This study evaluated the effects of Fructus Corni Officinalis water extract (FCE) on congnitive impairment and Aβ clearance induced by beta amyloid Aβ (1-42) injection in the hippocampus of rat. Aβ (1-42) was injected into the hippocampus using a Hamilton syringe and micropump (5 ㎍/5 ㎕, 1 ㎕/min, each hippocampus bilaterally). FCE was administered orally once a day (100, 250, 500 mg/kg) for 4 weeks after the Aβ (1-42) injection. The acquisition of learning and retention of memory were tested using the Morris water maze. Aβ accumulation and Aβ clearance in the hippocampus were observed using immunostaining. Aβ (1-42) level in plasma was confirmed using enzyme-linked immunosorbent assay (ELISA). FCE significantly shortened the escape latencies during acquisition training trials. FCE significantly increased the number of target heading to the platform site and significantly shortened the time for the 1sttargetheadingduringtheretentiontesttrial.FCEsignificantlyattenuatedtheAβ accumulation in the hippocampus produced by Aβ (1-42) injection. FCE significantly increased LRP-1 expression around vessels in the hippocampus and Aβ (1-42) levels in plasma. The results suggest that FCE improved cognitive impairment by ameliorate Aβ clearance and Aβ accumulation in the hippocampus. FCE may be a beneficial herbal formulation in treating cognitive impairment including Alzheimer's disease.