Browse > Article
http://dx.doi.org/10.15188/kjopp.2016.10.30.5.347

Fructus Corni Officinalis water extract Ameliorates Memory Impairment and Beta amyloid (Aβ) clearance by LRP-1 Expression in the Hippocampus of a Rat model of Alzheimer’s Disease  

Lee, Ju Won (Department of Korean Medical Science, Graduate School of East-West Medical Science, Kyung Hee University)
Publication Information
Journal of Physiology & Pathology in Korean Medicine / v.30, no.5, 2016 , pp. 347-354 More about this Journal
Abstract
This study evaluated the effects of Fructus Corni Officinalis water extract (FCE) on congnitive impairment and Aβ clearance induced by beta amyloid Aβ (1-42) injection in the hippocampus of rat. Aβ (1-42) was injected into the hippocampus using a Hamilton syringe and micropump (5 ㎍/5 ㎕, 1 ㎕/min, each hippocampus bilaterally). FCE was administered orally once a day (100, 250, 500 mg/kg) for 4 weeks after the Aβ (1-42) injection. The acquisition of learning and retention of memory were tested using the Morris water maze. Aβ accumulation and Aβ clearance in the hippocampus were observed using immunostaining. Aβ (1-42) level in plasma was confirmed using enzyme-linked immunosorbent assay (ELISA). FCE significantly shortened the escape latencies during acquisition training trials. FCE significantly increased the number of target heading to the platform site and significantly shortened the time for the 1sttargetheadingduringtheretentiontesttrial.FCEsignificantlyattenuatedtheAβ accumulation in the hippocampus produced by Aβ (1-42) injection. FCE significantly increased LRP-1 expression around vessels in the hippocampus and Aβ (1-42) levels in plasma. The results suggest that FCE improved cognitive impairment by ameliorate Aβ clearance and Aβ accumulation in the hippocampus. FCE may be a beneficial herbal formulation in treating cognitive impairment including Alzheimer's disease.
Keywords
Fructus Corni Officinalis water extract; beta-amyloid clearance; Memory impairment; Alzheimer’ s disease;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Donahue, J.E., Flaherty, S.L., Johanson, C.E., Duncan, J.A.3rd, Silverberg, G.D., Miller, M.C., Tavares, R., Yang, W., Wu, Q., Sabo, E., Hovanesian, V., Stopa, E.G. RAGE, LRP-1, and amyloid-beta protein in Alzheimer's disease. Acta Neuropathol. 112(4):405-415, 2006.   DOI
2 Shibata, M., Yamada, S., Kumar, S., Calero, M., Bading, J., Frangione, B., Holtzman, D., Miller, C., Strickland, D., Ghiso, J., Zlokovic, B. Clearance of Alzheimer’s amyloid-ss(1-40) peptide from brain by LDL receptor-related protein-1 at the blood-brain barrier. J Clin Invest 106: 1489-1499, 2000.   DOI
3 Tamaki, C., Ohtsuki, S., Iwatsubo, T., Hashimoto, T., Yamada, K., Yabuki, C. Major involvement of low-density lipoprotein receptor-related protein 1 in the clearance of plasma free amyloid beta-peptide by the liver. Pharm. Res. 23: 1407-1416, 2006.   DOI
4 Bell, R.D., Sagare, A.P., Friedman, A.E., Bedi, G.S., Holtzman, D.M., Deane, R. Transport pathways for clearance of human Alzheimer’s amyloid beta-peptide and apolipoproteins E and J in the mouse central nervous system. J. Cereb. Blood Flow Metab. 27: 909-918, 2007.   DOI
5 Sagare, A., Deane, R., Bell, R.D., Johnson, B., Hamm, K., Pendu, R. Clearance of amyloid-beta by circulating lipoprotein receptors. Nat. Med. 13: 1029-1031, 2007.   DOI
6 Liu, H., Xing, A., Wang, X., Liu, G., Li, L. Regulation of β-amyloid level in the brain of rats with cerebrovascular hypoperfusion. Neurobiol Aging. 33(826):31-42, 2012.
7 Wang, Y.J., Zhou, H.D., Zhou, X.F. Clearance of amyloid-beta in Alzheimer's disease: progress, problemsand perspectives. Drug Discov Today. 11(20):931-938, 2006.   DOI
8 Donahue, J.E., Flaherty, S.L., Johanson, C.E., Duncan, J.A.3rd, Silverberg, G.D., Miller, M.C., Tavares, R., Yang, W., Wu, Q., Sabo, E., Hovanesian, V., Stopa, E.G. RAGE, LRP-1, and amyloid-beta protein in Alzheimer's disease. Acta Neuropathol. 112(4):405-415, 2006.   DOI
9 Han, Y., Jung, H.W., Park, Y.K. Selective therapeutic effect of cornus officinalis fruits on the damage of different organs in STZ-induced diabetic rats. Am J Chin Med. 42(5):1169-1182, 2014.   DOI
10 Scripnikov, A., Khomenko, A., Napryeyenko, O. GINDEM-NP Study Group. Effects of Ginkgo biloba extract EGb 761 on neuropsychiatric symptoms of dementia: findings from a randomised controlled trial. Wien Med Wochenschr. 157(13):295-300, 2007.   DOI
11 Dickson, D.W. The pathogenesis of senile plaques. J Neuropathol Exp Neurol 56(4):321-339, 1997.   DOI
12 Yates, S.L., Burgess, L.H., Kocsis-Angle, J., Antal, J.M., Dority, M.D., Embury, P.B., et al. Amyloid beta and amylin fibrils induce increases in proinflammatory cytokine and chemokine production by THP-1 cells and murine microglia. J Neurochem. 74(3):1017-1025, 2000.   DOI
13 Selkoe, D.J., Schenk, D. Alzheimer’s disease: Molecular understanding predicts amyloid-based therapeutics. Annu Rev Pharmacol Toxicol. 43: 545-584, 2003.   DOI
14 Blennow, K., de Leon, M.J., Zetterberg, H. Alzheimer's disease. Lancet. 29;368(9533):387-403, 2006.   DOI
15 Jeong, E.J., Kim, T.B., Yang, H., Kang, S.Y., Kim, S.Y., Sung, S.H., Kim, Y.C. Neuroprotective iridoid glycosides from Cornus officinalis fruits against glutamate-induced toxicity in HT22 hippocampal cells. Phytomedicine. 15(19):317-321, 2012.   DOI
16 Wang, W., Sun, F., An, Y., Ai, H., Zhang, L., Huang, W., Li, L. Morroniside protects human neuroblastoma SH-SY5Y cells against hydrogen peroxide-induced cytotoxicity. Eur J Pharmacol. 24(613):19-23, 2009.   DOI
17 Hong, S.Y., Jeong, W.S., Jun, M. Protective effects of the key compounds isolated from Corni fructus against β-amyloid-induced neurotoxicity in PC12 cells. Molecules. 10(17):10831-10845, 2012.   DOI
18 Dickson, D.W. The pathogenesis of senile plaques. J Neuropathol Exp Neurol. 56(4):321-339. 1997.   DOI
19 Ball, M.J. Neuronal loss, neurofibrillary tangles and granulovacuolar degeneration in the hippocampus with ageing and dementia. A quantitative study. Acta Neuropathol. 28;37(2):111-118, 1977.   DOI
20 Grundke-Iqbal, I., Iqbal, K., Quinlan, M., Tung, Y.C., Zaidi, M.S., Wisniewski, H.M. Microtubule-associated protein tau. A component of alzheimer paired helical filaments. J Biol Chem. 5;261(13):6084-6089, 1986.
21 Kuhl, D.E., Koeppe, R.A., Minoshima, S., Snyder, S.E., Ficaro, E.P., Foster, N.L., et al. In vivo mapping of cerebral acetylcholinesterase activity in aging and alzheimer's disease. Neurology. 10;52(4):691-699, 1999.   DOI
22 Selkoe, D.J. Amyloid beta-protein and the genetics of alzheimer's disease. J Biol Chem. 2;271(31):18295-19298, 1996.   DOI
23 Roberson, M.R., Kolasa, K., Parsons, D.S., Harrell, L.E. Cholinergic denervation and sympathetic ingrowth result in persistent changes in hippocampal muscarinic receptors. Neuroscience. 80(2):413-418, 1997.   DOI
24 Cacquevel, M., Lebeurrier, N., Cheenne, S., Vivien, D. Cytokines in neuroinflammation and alzheimer's disease. Curr Drug Targets. 5(6):529-534, 2004.   DOI
25 Berezovska, O., Lleo, A., Herl, L.D., Frosch, M.P., Stern, E.A., Bacskai, B.J., et al. Familial alzheimer's disease presenilin 1 mutations cause alterations in the conformation of presenilin and interactions with amyloid precursor protein. J Neurosci. 16;25(11):3009-3017, 2005.   DOI
26 Mhatre, M., Floyd, R.A., Hensley, K. Oxidative stress and neuroinflammation in alzheimer's disease and amyotrophic lateral sclerosis: Common links and potential therapeutic targets. J Alzheimers Dis. 6(2):147-157, 2004.   DOI
27 Bell, R.D., Sagare, A.P., Friedman, A.E., Bedi, G.S., Holtzman, D.M., Deane, R., et al. Transport pathways for clearance of human Alzheimer’s amyloid beta-peptideand apolipoproteins E and J in the mouse centralnervous system. J Cereb Blood Flow Metab. 27: 909-918, 2007.   DOI
28 De Ferrari, G.V., Canales, M.A., Shin, I., Weiner, L.M., Silman, I., Inestrosa, N.C. A structural motif of acetylcholinesterase that promotes amyloid beta-peptide fibril formation. Biochemistry. 4;40(35):10447-10457, 2001.   DOI
29 Deane, R., Bell, R., Sagare, A., Zlokovic, B. Clearance of amyloid-β peptide across the blood-brain barrier: Implication for therapies in Alzheimer’s disease. CNS & neurological disorders drug targets. 8(1):16-30, 2009.   DOI
30 Ramanathan, A., Nelson, A., Sagare, A., Zlokovic, B. Impaired vascular-mediated clearance of brain amyloid beta in Alzheimer’s disease: The role, regulation and restoration of LRP1. Frontiers in Aging Neuroscience. 7: 136, 2015.   DOI
31 Deane, R., Wu, Z., Sagare, A., Davis, J., Du Yan, S., Hamm, K., et al. LRP/amyloid beta-peptide interaction mediates differential brain efflux of Aβ isoforms. Neuron. 43: 333-344, 2004.   DOI
32 Lee, K.Y., Sung, S.H., Kim, S.H., Jang, Y.P., Oh, T.H., Kim, Y.C. Cognitive-enhancing activity of loganin isolated from Cornus officinalis in scopolamine-induced amnesic mice. Archives of Pharmacal Research. 32(5):677-683, 2009.   DOI
33 Wang, R., Zhang, Y., Li, J., Zhang, C. Resveratrol ameliorates spatial learning memory impairment induced by Aβ1-42 in rats. Neuroscience. S0306-4522(16)30433-X. 2016.
34 Ashabi, G., Alamdary, S.Z., Ramin, M., Khodagholi, F. Reduction of hippocampal apoptosis by intracerebroventricular administration of extracellular signal-regulated protein kinase and/or p38 inhibitors in amyloid beta rat model of Alzheimer's disease: involvement of nuclear-related factor-2 and nuclear factor-κB. Basic Clin Pharmacol Toxicol. 112(3):145-155, 2013.   DOI
35 Blennow, K., de Leon, M.J., Zetterberg, H. Alzheimer’s disease. Lancet 368(9533):387-403, 2006.   DOI
36 Lecanu, L., Greeson, J., Papadopoulos, V. Beta-amyloid and oxidative stress jointly induce neuronal death, amyloid deposits, gliosis, and memory impairment in the rat brain. Pharmacology. 76: 19-33, 2006.   DOI
37 Kamenetz, F., Tomita, T., Hsieh, H., Seabrook, G., Borchelt, D., Iwatsubo, T., Sisodia, S., Malinow, R. APP processing and synaptic function. Neuron. 37: 925-937, 2003.   DOI