• Title/Summary/Keyword: $A^*$ search algorithm

Search Result 3,558, Processing Time 0.032 seconds

Finding the One-to-One Optimum Path Considering User's Route Perception Characteristics of Origin and Destination (Focused on the Origin-Based Formulation and Algorithm) (출발지와 도착지의 경로인지특성을 반영한 One-to-One 최적경로탐색 (출발지기반 수식 및 알고리즘을 중심으로))

  • Shin, Seong-Il;Sohn, Kee-Min;Cho, Chong-Suk;Cho, Tcheol-Woong;Kim, Won-Keun
    • Journal of Korean Society of Transportation
    • /
    • v.23 no.7 s.85
    • /
    • pp.99-110
    • /
    • 2005
  • Total travel cost of route which connects origin with destination (O-D) is consist of the total sum of link travel cost and route perception cost. If the link perception cost is different according to the origin and destination, optimal route search has limitation to reflect the actual condition by route enumeration problem. The purpose of this study is to propose optimal route searching formulation and algorithm which is enable to reflect different link perception cost by each route, not only avoid the enumeration problem between origin and destination. This method defines minimum unit of route as a link and finally compares routes using link unit costs. The proposed method considers the perception travel cost at both origin and destination in optimal route searching process, while conventional models refect the perception cost only at origin. However this two-way searching algorithm is still not able to guarantee optimum solution. To overcome this problem, this study proposed an orign based optimal route searching method which was developed based on destination based optimal perception route tree. This study investigates whether proposed numerical formulas and algorithms are able to reflect route perception behavior reflected the feature of origin and destination in a real traffic network by the example research including the diversity of route information for the surrounding area and the perception cost for the road hierarchy.

Object Extraction Technique using Extension Search Algorithm based on Bidirectional Stereo Matching (양방향 스테레오 정합 기반 확장탐색 알고리즘을 이용한 물체추출 기법)

  • Choi, Young-Seok;Kim, Seung-Geun;Kang, Hyun-Soo
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.45 no.2
    • /
    • pp.1-9
    • /
    • 2008
  • In this paper, to extract object regions in stereo image, we propose an enhanced algorithm that extracts objects combining both of brightness information and disparity information. The approach that extracts objects using both has been studied by Ping and Chaohui. In their algorithm, the segmentation for an input image is carried out using the brightness, and integration of segmented regions in consideration of disparity information within the previously segmented regions. In the regions where the brightness values between object regions and background regions are similar, however, the segmented regions probably include both of object regions and background regions. It may cause incorrect object extraction in the merging process executed in the unit of the segmented region. To solve this problem, in proposed method, we adopt the merging process which is performed in pixel unit. In addition, we perform the bi-directional stereo matching process to enhance reliability of the disparity information and supplement the disparity information resulted from a single directional matching process. Further searching for disparity is decided by edge information of the input image. The proposed method gives good performance in the object extraction since we find the disparity information that is not extracted in the traditional methods. Finally, we evaluate our method by experiments for the pictures acquired from a real stereoscopic camera.

The Fault Diagnosis Model of Ship Fuel System Equipment Reflecting Time Dependency in Conv1D Algorithm Based on the Convolution Network (합성곱 네트워크 기반의 Conv1D 알고리즘에서 시간 종속성을 반영한 선박 연료계통 장비의 고장 진단 모델)

  • Kim, Hyung-Jin;Kim, Kwang-Sik;Hwang, Se-Yun;Lee, Jang Hyun
    • Journal of Navigation and Port Research
    • /
    • v.46 no.4
    • /
    • pp.367-374
    • /
    • 2022
  • The purpose of this study was to propose a deep learning algorithm that applies to the fault diagnosis of fuel pumps and purifiers of autonomous ships. A deep learning algorithm reflecting the time dependence of the measured signal was configured, and the failure pattern was trained using the vibration signal, measured in the equipment's regular operation and failure state. Considering the sequential time-dependence of deterioration implied in the vibration signal, this study adopts Conv1D with sliding window computation for fault detection. The time dependence was also reflected, by transferring the measured signal from two-dimensional to three-dimensional. Additionally, the optimal values of the hyper-parameters of the Conv1D model were determined, using the grid search technique. Finally, the results show that the proposed data preprocessing method as well as the Conv1D model, can reflect the sequential dependency between the fault and its effect on the measured signal, and appropriately perform anomaly as well as failure detection, of the equipment chosen for application.

Making Cache-Conscious CCMR-trees for Main Memory Indexing (주기억 데이타베이스 인덱싱을 위한 CCMR-트리)

  • 윤석우;김경창
    • Journal of KIISE:Databases
    • /
    • v.30 no.6
    • /
    • pp.651-665
    • /
    • 2003
  • To reduce cache misses emerges as the most important issue in today's situation of main memory databases, in which CPU speeds have been increasing at 60% per year, and memory speeds at 10% per year. Recent researches have demonstrated that cache-conscious index structure such as the CR-tree outperforms the R-tree variants. Its search performance can be poor than the original R-tree, however, since it uses a lossy compression scheme. In this paper, we propose alternatively a cache-conscious version of the R-tree, which we call MR-tree. The MR-tree propagates node splits upward only if one of the internal nodes on the insertion path has empty room. Thus, the internal nodes of the MR-tree are almost 100% full. In case there is no empty room on the insertion path, a newly-created leaf simply becomes a child of the split leaf. The height of the MR-tree increases according to the sequence of inserting objects. Thus, the HeightBalance algorithm is executed when unbalanced heights of child nodes are detected. Additionally, we also propose the CCMR-tree in order to build a more cache-conscious MR-tree. Our experimental and analytical study shows that the two-dimensional MR-tree performs search up to 2.4times faster than the ordinary R-tree while maintaining slightly better update performance and using similar memory space.

Development of the Retrieval System of Information Flow for a Large-scale and Complex Construction Project using Information Transfer Relationship on Business Process (업무 정보전달관계를 이용한 대형복합건설사업의 정보흐름 색시스템 개발)

  • Shin, Jinho;Lee, Hyun-Soo;Park, Moonseo;Yu, Jung-Ho
    • Korean Journal of Construction Engineering and Management
    • /
    • v.13 no.6
    • /
    • pp.84-93
    • /
    • 2012
  • The information generated from large and complex construction projects transfer and evolve in long-term business cycle. Therefore, while there is any problem, such as delay, the cause of the problem might relate to the previous business process rather than where it arises. However, for complex project players and business relationships, it is unsuitable to search an information flow using traditional retrieval methods. This research addresses a relationship-based information search system to analyze the information flow in large-scale and complex construction projects. First, we identified the components of the information retrieval system customizing for a large-scale complex construction projects, and then developed the inference algorithm which define the relationship between business processes. For the validation, we applied the system on a business information system of urban regeneration projects and suggested some application using information flow retrieval system for project players and project managers. Using the system, players are easy to prepare for their work process and managers can define the causal flow of the problem.

Music Retrieval Using the Geometric Hashing Technique (기하학적 해싱 기법을 이용한 음악 검색)

  • Jung, Hyosook;Park, Seongbin
    • The Journal of Korean Association of Computer Education
    • /
    • v.8 no.5
    • /
    • pp.109-118
    • /
    • 2005
  • In this paper, we present a music retrieval system that compares the geometric structure of a melody specified by a user with those in a music database. The system finds matches between a query melody and melodies in the database by analyzing both structural and contextual features. The retrieval method is based on the geometric hashing algorithm which consists of two steps; the preprocessing step and the recognition step. During the preprocessing step, we divide a melody into several fragments and analyze the pitch and duration of each note of the fragments to find a structural feature. To find a contextual feature, we find a main chord for each fragment. During the recognition step, we divide the query melody specified by a user into several fragments and search through all fragments in the database that are structurally and contextually similar to the melody. A vote is cast for each of the fragments and the music whose total votes are the maximum is the music that contains a matching melody against the query melody. Using our approach, we can find similar melodies in a music database quickly. We can also apply the method to detect plagiarism in music.

  • PDF

Design of Regional Coverage Low Earth Orbit (LEO) Constellation with Optimal Inclination

  • Shin, Jinyoung;Park, Sang-Young;Son, Jihae;Song, Sung-Chan
    • Journal of Astronomy and Space Sciences
    • /
    • v.38 no.4
    • /
    • pp.217-227
    • /
    • 2021
  • In this study, we describe an analytical process for designing a low Earth orbit constellation for discontinuous regional coverage, to be used for a surveillance and reconnaissance space mission. The objective of this study was to configure a satellite constellation that targeted multiple areas near the Korean Peninsula. The constellation design forms part of a discontinuous regional coverage problem with a minimum revisit time. We first introduced an optimal inclination search algorithm to calculate the orbital inclination that maximizes the geometrical coverage of single or multiple ground targets. The common ground track (CGT) constellation pattern with a repeating period of one nodal day was then used to construct the rest of the orbital elements of the constellation. Combining these results, we present an analytical design process that users can directly apply to their own situation. For Seoul, for example, 39.0° was determined as the optimal orbital inclination, and the maximum and average revisit times were 58.1 min and 27.9 min for a 20-satellite constellation, and 42.5 min and 19.7 min for a 30-satellite CGT constellation, respectively. This study also compares the revisit times of the proposed method with those of a traditional Walker-Delta constellation under three inclination conditions: optimal inclination, restricted inclination by launch trajectories from the Korean Peninsula, and inclination for the sun-synchronous orbit. A comparison showed that the CGT constellation had the shortest revisit times with a non-optimal inclination condition. The results of this analysis can serve as a reference for determining the appropriate constellation pattern for a given inclination condition.

PAPR Reduction Method of OFDM System Using Fuzzy Theory (Fuzzy 이론을 이용한 OFDM 시스템에서 PAPR 감소 기법)

  • Lee, Dong-Ho;Choi, Jung-Hun;Kim, Nam;Lee, Bong-Woon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.7
    • /
    • pp.715-725
    • /
    • 2010
  • Orthgonal Frequency Division Multiplexing(OFDM) system is effective for the high data rate transmission in the frequency selective fading channel. In this paper we propose PAPR(Peak to Average Power Ratio) reduction method of problem in OFDM system used Fuzzy theory that often control machine. This thesis proposes PAPR reducing method of OFDM system using Fuzzy theory. The advantages for using Fuzzy theory to reduce PAPR are that it is easy to manage the data and embody the hardware, and required smaller amount of operation. Firstly, we proposed simple algorithm that is reconstructed at receiver with transmitted overall PAPR which is reduced PAPR of sub-block using Fuzzy. Although there are some drawbacks that the operation of the system is increased comparing conventional OFDM system and it is needed to send the information about Fuzzy indivisually, it is assured that the performance of the system is enhanced for PAPR reducing. To evaluate the perfomance, the proposed search algorithm is compared with the proposed algorithm in terms of the complementary cumulative distribution function(CCDF) of the PAPR and the computational complexity. As a result of using the QPSK and 16QAM modulation, Fuzzy theory method is more an effective method of reducing 2.3 dB and 3.1 dB PAPR than exiting OFDM system when FFT size(N)=512, and oversampling=4 in the base PR of $10^{-5}$.

Real-Time Lane Detection Based on Inverse Perspective Transform and Search Range Prediction (역원근 변환과 검색 영역 예측에 의한 실시간 차선 인식)

  • Kim, S.H.;Lee, D.H.;Lee, M.H.;Be, J.I.
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.2843-2845
    • /
    • 2000
  • A lane detection based on a road model or feature all need correct acquirement of information on the lane in a image, It is inefficient to implement a lane detection algorithm through the full range of a image when being applied to a real road in real time because of the calculating time. This paper defines two searching range of detecting lane in a road, First is searching mode that is searching the lane without any prior information of a road, Second is recognition mode, which is able to reduce the size and change the position of a searching range by predicting the position of a lane through the acquired information in a previous frame. It is allow to extract accurately and efficiently the edge candidates points of a lane as not conducting an unnecessary searching. By means of removing the perspective effect of the edge candidate points which are acquired by using the inverse perspective transformation, we transform the edge candidate information in the Image Coordinate System(ICS) into the plane-view image in the World Coordinate System(WCS). We define linear approximation filter and remove the fault edge candidate points by using it This paper aims to approximate more correctly the lane of an actual road by applying the least-mean square method with the fault-removed edge information for curve fitting.

  • PDF

Real-Time Lane Detection Based on Inverse Perspective Transform and Search Range Prediction (역 원근 변환과 검색 영역 예측에 의한 실시간 차선 인식)

  • Jeong, Seung-Gweon;Kim, In-Soo;Kim, Sung-Han;Lee, Dong-Hwoal;Yun, Kang-Sup;Lee, Man-Hyung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.3
    • /
    • pp.68-74
    • /
    • 2001
  • A lane detection based on a road model or feature all needs correct acquirement of information on the lane in an image. It is inefficient to implement a lane detection algorithm through the full range of an image when it is applied to a real road in real time because of the calculating time. This paper defines two (other proper terms including"modes") for detecting lanes on a road. First is searching mode that is searching the lane without any prior information of a road. Second is recognition mode, which is able to reduce the size and change the position of a searching range by predicting the position of a lane through the acquired information in a previous frame. It allows to extract accurately and efficiently the edge candidate points of a lane without any unnecessary searching. By means of inverse perspective transform which removes the perspective effect on the edge candidate points, we transform the edge candidate information in the Image Coordinate System(ICS) into the plan-view image in the World Coordinate System(WCS). We define a linear approximation filter and remove faulty edge candidate points by using it. This paper aims at approximating more correctly the lane of an actual road by applying the least-mean square method with the fault-removed edge information for curve fitting.e fitting.

  • PDF