• Title/Summary/Keyword: $5-HT_6$ receptor

Search Result 61, Processing Time 0.034 seconds

Effect of Fluoxetine on the Induction of Long-term Potentiation in Rat Frontal Cortex

  • Kim, Hwang-Soo;Kim, Hyun-Sok;Hahn, Sang-June;Kim, Myung-Jun;Yoon, Shin Hee;Jo, Yang-Hyeok;Kim, Myung-Suk;Rhie, Duck-Joo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.8 no.6
    • /
    • pp.295-300
    • /
    • 2004
  • Serotonin (5-hydroxytroptamine, 5-HT) has been shown to affect the induction of long-term potentiation (LTP) in the cortex such as the hippocampus, the visual cortex and the prefrontal cortex. Fluoxetine, as a selective serotonin reuptake inhibitor, is used in the management of a wide variety of psychological diseases. To study the effect of fluoxetine on the induction of LTP, we recorded the field potential in layer II/III of the frontal cortex from 3-wk-old. LTP was induced in horizontal input by theta burst stimulation (TBS). TBS with two-folds intensity of the test stimulation induced LTP, which was blocked by application of D-AP5 $(50 {\mu}M)$, an NMDA receptor antagonist. Whereas bath application of 5-HT $(10 {\mu}M)$ inhibited the induction of LTP, treatment with the 5-HT depleting agent, para-chloroamphetamine $(PCA,\;10{\mu}M)$, for 2hr did not affect the induction of LTP. Bath application of fluoxetine (1, 3, and $10 {\mu}M)$ suppressed the induction of LTP in concentration-dependent manner, however, fluoxetine did not inhibit the induction of LTP in 5-HT-depleted slices. These results indicate that fluoxetine may inhibit the induction of LTP by modulating serotonergic mechanism in the rat frontal cortex.

Effect of Ondansetron Alone and Combination of Naltrexone and Ondansetron on Alcohol Intake in C57BL/6 Mice (Naltrexone과 ondansetron의 병합투여가 C57BL/6형 생쥐의 알코올 섭취량에 미치는 영향)

  • Kim, Hyeun-Kyeung;Kim, Sung-Gon;Kang, Cheol-Joong;Park, Sang-Ick;Kim, Won-Ho
    • Journal of Life Science
    • /
    • v.17 no.11
    • /
    • pp.1576-1581
    • /
    • 2007
  • Dopamine reward pathway projecting from ventral tegmental area to nucleus accumbens is well known as playing an important role in alcohol dependence. It is supposed that this dopamine pathway is modulated by $5-HT_3$ nervous system, and it was reported that ondansetron (OND), $5-HT_3$ receptor antagonist, reduced drinking amount and increased abstinence rate in alcohol-dependent patients. The purpose of this study is to investigate the effect of combination of OND and naltrexone (NTX), non-specific opioid receptor antagonist, on alcohol intake in C57BL/6 mice. In 40 C57BL/6 mice in the state of alcohol dependence, vehicle, while OND 0.01 mg/kg, or NTX 1.0 mg/kg administrated respectively, or OND 0.01 mg/kg and NTX 1.0 mg/kg administrated simultaneously for ten days, medication effects on 2-hr alcohol, 22-hr water, 24-hr food intake and body weight were studied. When vehicle group was compared with 3 medication groups respectively, using a repeated measure ANOVA, NTX alone and vehicle groups showed a significant medication by time interaction (p=0.042) in 2-hr alcohol intake, but in the other 2 groups, OND and NTX combination group and OND alone group, there was no significant interaction with vehicle group in 2-hr alcohol intake. From these results, it is suggested that there is no effect on alcohol intake in mice treating with OND, and naltrexone#s suppression effect on alcohol intake in mice is attenuated when treating with OND and NTX simultaneously. It is supposed that a further study looking at the interactions of serotonin, dopamine and opioid nerves systems will be needed.

The Analgesic Effect and Mechanisms of Dianthus chinensis L Extract in the mice.

  • Park, Soo-Hyun;Sim, Yun-Beom;Lee, Jin-Koo;Lim, Soon-Sung;Kim, Jin-Kyu;Suh, Hong-Won
    • Korean Journal of Plant Resources
    • /
    • v.23 no.6
    • /
    • pp.513-518
    • /
    • 2010
  • In the present study, the antinociceptive profiles of Dianthus chinensis L extract were examined in ICR mice. Dianthus chinensis L extract administered orally (200 mg/kg) showed an antinociceptive effect as measured by the tail-flick and hot-plate tests. In addition, Dianthus chinensis L extract attenuated the writhing numbers in the acetic acid-induced writhing test. Furthermore, the cumulative nociceptive response time for intrathecal (i.t.) injection of substance P ($0.7\;{\mu}g$) was diminished by Dianthus chinensis L extract. Intraperitoneal (i.p.) pretreatment with yohimbine ($\alpha_2$-adrenergic receptor antagonist) attenuated antinociceptive effect induced by Dianthus chinensis L extract in the writhing test. However, naloxone (opioid receptor antagonist) or methysergide (5-HT serotonergic receptor antagonist) did not affect antinociception induced by Dianthus chinensis L extract in the writhing test. Our results suggest that Dianthus chinensis L extract shows an antinociceptive property in various pain models. Furthermore, this antinociceptive effect of Dianthus chinensis L extract may be mediated by $\alpha_2$-adrenergic receptor, but not opioidergic and serotonergic receptors.

Effects of Neonatal Footshock Stress on Glucocorticoid and $5-HT_{2A/2C}$ Receptor Bindings and Exploratory Behavior

  • Kim, Dong-Goo;Lee, Seoul;Kang, Dong-Won;Lim, Jong-Su
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.2 no.6
    • /
    • pp.677-685
    • /
    • 1998
  • To investigate the effects of neonatal stress on behavior and neurochemistry, rats were exposed to the footshock stress on postnatal day (PND) 14 or PNDs 14 and 21. Rats were exposed to uncontrollable electric shocks delivered to the floor with a constant current (0.8 mA) for 5 sec period. Daily sessions consisted of 60 trials on a random time schedule with an average of 55 sec. The first exposure to footshocks on PND 14 decreased body weight gain for 1 day. However, the second exposure to footshocks on PND 21 did not affect body weight gain. Exploratory activity was measured by exposing a rat to a novel environment 24 h after experience of footshocks. Similar to the body weight changes, a decreased activity was noted after the first exposure to footshocks, while no changed activity was noted after the second exposure to footshocks. However, the Bmax value of $5-HT_{2A/2C}$ receptors in the cortex decreased by the second exposure to footshocks, but not by the first exposure to footshocks. Moreover, an autoradiographic study revealed that the density of $[^3H]dexamethasone$ binding in hippocampus decreased in rats exposed to footshocks 4 times during PND $14{\sim}20.$ These results suggest that the uncontrollable footshock stress changes 5-hydroxytryptamine and glucocorticoid receptor systems acutely and that the repeated exposure to the same stress may not elicit behavioral alterations by the compensatory activity of young brain although changes in some neurochemistry exist.

  • PDF

Antioxidative and Anticancer Activities of Julbernardia globiflora Extract in Human Colon Adenocarcinoma HT29 Cells (Julbernardia globiflora 추출물의 항산화 활성 및 인체 대장암 세포 HT29에 대한 항암 활성 분석)

  • Oh, You Na;Jin, Soojung;Kwon, Hyun Ju;Kim, Byung Woo
    • Journal of Life Science
    • /
    • v.27 no.5
    • /
    • pp.545-552
    • /
    • 2017
  • Julbernardia globiflora, a tropical African tree widespread in Miombo woodland, has been used in folk medicine for the treatment of depression and stomach problems. However, the antioxidative and anticancer activities of J. globiflora remain unclear. The objective of this study is to evaluate the antioxidative and anticancer effects of methanol extract of J. globiflora (MEJG) and the molecular mechanism of its anticancer activity in human colon carcinoma HT29 cells. MEJG exhibited significant antioxidative effect with an $IC_{50}$ (concentration at 50% inhibition) value of $1.23{\mu}g/ml$ measuring by 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay and inhibited cell proliferation in a dose-dependent manner in HT29 cells. We found that MEJG induced apoptosis of HT29 cells with the increase of apoptotic cells and apoptotic bodies using Annexin V staining and 4,6-diamidino-2-phenylindole (DAPI) staining, respectively. The MEJG treatment showed the increase of Fas, a death receptor, and Bax, a pro-apoptotic protein, and the decrease of Bcl-2, an anti-apoptotic protein, resulting in the release of cytochrome c from the mitochondria into the cytosol and activation of caspase-3, -8 and -9. The apoptotic effects of MEJG were confirmed by cleavage of poly (ADP-ribose) polymerase (PARP). Collectively, these results suggest that MEJG may exert the anticancer effect in HT29 cells by inducing apoptosis via both the intrinsic and extrinsic pathways.

Pharmacogenomics and Schizophrenia (약물유전체학과 정신분열병)

  • Lee, Kyu Young;Chung, In Won
    • Korean Journal of Biological Psychiatry
    • /
    • v.8 no.2
    • /
    • pp.208-219
    • /
    • 2001
  • The pharmacotherapy of schizophrenia exhibits wide inter-individual variabilities in clinical efficacy and adverse effects. Recently, human genetic diversity has been known as one of the essential factors to the variation in human drug response. This suggests that drug therapy should be tailored to the genetic characteristics of the individual. Pharmacogenetics is the field of investigation that attempts to elucidate genetic basis of an individual's responses to pharmacotherapy, considering drug effects divided into two categories as pharmacokinetics and pharmacodynamics. The emerging field of pharmacogenomics, which focuses on genetic determinants of drug response at the level of the entire human genome, is important for development and prescription of safer and more effective individually tailored drugs and will aid in understanding how genetics influence drug response. In schizophrenia, pharmacogenetic studies have shown the role of genetic variants of the cytochrome P450 enzymes such as CYP2D6, CYP2C19, and CYP2A1 in the metabolism of antipsychotic drugs. At the level of drug targets, variants of the dopamine $D_2$, $D_3$ and $D_4$, and 5-$HT_{2A}$ and 5-$HT_{2C}$ receptors have been examined. The pharmacogenetic studies in schizophrenia presently shows controversial findings which may be related to the multiple involvement of genes with relatively small effects and to the lack of standardized phenotypes. For further development in the pharmacogenomics of schizophrenia, there would be required the extensive outcome measures and definitions, and the powerful new tools of genomics, proteomics and so on.

  • PDF

Comparative antidiabetic activity of different fractions of methanolic extract of Zingiber officinale Roscoe in streptozotocin induced NIDDM rats

  • Kadnur, Sanjay V.;Goyal, Ramesh K.
    • Advances in Traditional Medicine
    • /
    • v.5 no.3
    • /
    • pp.201-208
    • /
    • 2005
  • Earlier we have reported the antidiabetic activity of fresh juice of rhizomes of Zingiber officinale (Z. officinale) and its correlation with 5-HT receptor antagonism. Since 6-gingerol the marker compound of Z. officinale is reported to posses 5-HT anatgonistic activity, the present investigation, was undertaken to find out the concentration of 6-gingerol present in methanolic extract of Z. officinale and its different fractions (petroleum ether, toluene and chloroform). We also evaluated these fractions for antidiabetic activity in streptozotocin (STZ)-induced neonatal type 2 diabetic rats. Fasting glucose and insulin levels in non insulin dependent diabetes mellitus (NIDDM) rats were found to be significantly (P < 0.05) higher than control rats and these were significantly decreased by treatment with methanolic extract of Z. officinale and its fractions. The results of oral glucose tolerance test (OGTT) showed that methanolic extract and its fractions significantly (P < 0.05) decreased both STZ-induced increase in $AUC_{glucose}$ and $AUC_{insulin}$ values in NIDDM groups. Treatment with petroleum ether fraction produced a greater reduction in elevated glucose and $AUC_{glucose}$ levels as compared to treatment with other fractions. Treatment with methanolic extract of Z. officinale and its fractions also produced significant reduction in the elevated lipid, serum glutamate oxaloacetate transaminase (SGOT) and serum glutamate pyruvate transaminase (SGPT) levels in NIDDM rats. The effect of petroleum ether fraction on elevated lipid, SGOT and SGPT levels was significantly greater as compared to treatment with other fractions. The concentration of 6-gingerol was found to be maximum in petroleum ether fraction (11.430%) and minimum in chloroform fraction (0.973%). The methanolic extract and toluene fraction was found to contain 3.080% and 2.191 %, 6-gingerol respectively. In conclusion, our data suggest that methonolic extract and its fractions possess significant antidiabetic activity in NIDDM rats. The extent of activity appears to be dependent on the concentration of 6-gingerol present in the extract or its fractions.

Effect of Acute and Chronic Treatment with Risperidone on the Serotonin and Dopamine Receptors in the Rat Brain (Risperidone의 급성 및 만성 투여가 흰쥐 뇌의 Serotonin과 Dopamine 수용체에 미치는 영향)

  • Choi, Yun-Young;Son, Hye-Kyung;Kim, Chang-Yoon;Lee, Chul;Lee, Hee-Kyung;Moon, Dae-Hyuk
    • The Korean Journal of Nuclear Medicine
    • /
    • v.31 no.1
    • /
    • pp.9-18
    • /
    • 1997
  • The therapeutic efficacy of antipsychotic drugs is generally attributed to their ability to block dopamine $D_2$ receptors. Classical $D_2$ antagonists are not effective to treat negative symptoms and produce extrapyramidal side effects On the other hand, atypical antipsychotic agents ameliorate negative symptoms without producing extra-pyramidal side effects, and it is reported to be associated with blockade of serotonin $5-HT_2$ receptors. The purpose of this study was to evaluate the effect of risperidone on neuroreceptors in the rat brain by Quantitative autoradiography method. In acute treatment group, risperidone was injected into Peritoneal cavity of male Wistar rats with dose of 0, 0.1, 0.25, 0.5, 1.0 and 2.0mg/kg in each group(5/group), and they were decapitated after 2 hours. In chronic treatment group, risperidone was injected with dose of 0, 0.1, and 1mg/kg(I.P.) for 21 days and decapitated after 24 hours following last treatment. The effect of risperodone on the binding of [$^3H$]spiperone to $5-HT_2$ and $D_2$ receptors were analysed in 4 discrete regions of the striatum, nucleus accumbens, and frontal cortex by quantitative autoradiography Acute treatment with risperidone reduced cortical $5-HT_2$ specific [$^3H$]spiperone binding to 32% of vehicle-treated control. Subcortical $5-HT_2$ specific [$^3H$]spiperone binding was not affected at all dose groups whereas a significant reduction (57%) in $D_2$ specific [$^3H$]spiperone binding was observed in risperidone treated group at doses of 1-2mg/kg. Chronic treatment with risperidone produced a decrease in the maximal number of cortical $5-HT_2$ receptors to 51% and 46% of control in 0.1mg/kg & 1mg/kg treated group respectively. In conclusion, risperidone is a cortical serotonin receptor antagonist with relatively weak antagonistic action on dopamine receptors. These effects oil neuroreceptors may explain the therapeutic effect of risperidone as a atypical antipsychotic agents.

  • PDF

Glutamate-Induced Serotonin Depletion in Fetal Rat Brainstem Cultures (흰쥐태 뇌간의 배양에서 Glutamate에 의한 Serotonin의 고갈)

  • Park, Sang-Wook;Wie, Myung-Bok;Song, Dong-Keun;Kim, Yong-Sik;Kim, Yung-Hi
    • The Korean Journal of Pharmacology
    • /
    • v.29 no.2
    • /
    • pp.189-193
    • /
    • 1993
  • Exposure of dissociated cultures from fetal rat brainstem to glutamate for upto 6 h decreased cellular contents of 5-hydroxytryptamine and 5-hydroxyindoleacetic acid in a concentration- and time-dependent manner. In addition, glutamate induced lactate dehydrogenase leakage. Tetrodotoxin did not block the effects induced by glutamate. MK-801 $(1{\mu}M)$, an N-methyl-D-aspartate (NMDA) channel blocker, but not 6-cyano-2,3-dihydroxy-7-nitro-quinoxazoline $(CNQX;\;3{\mu}M)$, a non-NMDA receptor antagonist, blocked glutamate-induced effects, indicating that these glutamate-induced responses are mediated through NMDA receptors.

  • PDF

A literature Review of Single Nucleotide Polymorphisms in Obesity Genes (비만 유전자 단일 염기 다형성 문헌 고찰)

  • Kim, Sung-Soo;Song, Hee-Ok
    • Journal of Korean Medicine for Obesity Research
    • /
    • v.4 no.1
    • /
    • pp.139-160
    • /
    • 2004
  • The obesity is detrimental to the health of people living in affluent societies. Individual differences in energy metabolism are caused primarily by single nucleotide polymorphisms(SNPs), some of which promote the development of obesity-related type 2 diabetes mellitus. Type 2 diabetes mellitus is a common multifactorial genetic syndrome, which is determined by several different genes and environmental factors. In this review, five major conclusions are reached: (1)To be clinically significant, SNPs must be relevant, prevalent, modifiable, and measurable. (2)Differences in SNPs may have been caused by famine, ultraviolet light, alcohol, climate, agricultural revolution. livestock, lactase persistence, and westernized lifestyle. (3)Candidate obesity genes of calorie intake restriction are SIM 1, MC3R, MC4R, AGRP, CART, CCK, CNTFR, DRD2, Ghrelin, 5-HT receptor, NPY, PON and those of energy metabolism are LEP, LEPR, UCP1, UCP2, UCP3, B2AR, B3AR, PGC-1, Androgen receptor and those of fat mobilization are AGT, ACE, ADA, APM1, Apolipoproteins, PPAR, FABP, FOXC2, GCGR, $11-{\beta}HSDI$, LDLR, Hormonal sensitive lipase, Perilipin, $TNF-{\alpha}$, $TNF-{\beta}$ (4)Candidate obesity genes in the eastern are NPY, LEP, LEPR, UCP1, UCP2, UCP3, B2AR, B3AR, ACE, APM1, PPAR, and FABP. (5)Candidate obesity genes in type 2 diabetes mellitus are MC3R, MC4R, B2AR, B3AR, ADA, APM1, PPAR, FABP, FOXC2, PC1, PC2, ABCC8, CAPN10, CYP19, CYP7, ENPP1, GCK, GYS1, IGF, IL-6, Insulin receptor, IRS, and LPL. The discovery of SNPs will lead to a greater understanding of the pathogenesis of obesity and to better diagnostics, treatment, and eventually prevention.

  • PDF