• Title/Summary/Keyword: $2SnO{\cdot}(H_2O)$

Search Result 56, Processing Time 0.03 seconds

Synthesis of Sub-Micron 2SnO·(H2O) Powders Using Chemical Reduction Process and Thermal Calcination (화학적 합성법을 이용한 마이크론 이하급 2SnO·(H2O) 분말의 합성과 하소 특성)

  • Chee, Sang-Soo;Lee, Jong-Hyun
    • Korean Journal of Materials Research
    • /
    • v.23 no.11
    • /
    • pp.631-637
    • /
    • 2013
  • Synthesis of sub-micron $2SnO{\cdot}(H_2O)$ powders by chemical reduction process was performed at room temperature as function of viscosity of methanol solution and molecular weight of PVP (polyvinylpyrrolidone). Tin(II) 2-ethylhexanoate and sodium borohydride were used as the tin precursor and the reducing agent, respectively. Simultaneous calcination and sintering processes were additionally performed by heating the $2SnO{\cdot}(H_2O)$ powders. In the synthesis of the $2SnO{\cdot}(H_2O)$ powders, it was possible to control the powder size using different combinations of the methanol solution viscosity and the PVP molecular weight. The molecular weight of PVP particularly influenced the size of the synthesized $2SnO{\cdot}(H_2O)$ powders. A holding time of 1 hr in air at $500^{\circ}C$ sufficiently transformed the $2SnO{\cdot}(H_2O)$ into $SnO_2$ phase; however, most of the PVP (molecular weight: 1,300,000) surface-capped powders decomposed and was removed after heating for 1 h at $700^{\circ}C$. Hence, heating for 1 h at $500^{\circ}C$ made a porous $SnO_2$ film containing residual PVP, whereas dense $SnO_2$ films with no significant amount of PVP formed after heating for 1 h at $700^{\circ}C$.

Dyeing and Fastness of Silk and Cotton Fabrics Dyed with Cherry Extract (벚나무 열매의 색소 추출물에 의한 견 및 면섬유에 대한 염색성 및 견뢰도)

  • 이영희;황은경;김한도
    • Textile Coloration and Finishing
    • /
    • v.12 no.6
    • /
    • pp.389-395
    • /
    • 2000
  • A natural colorants was extracted from cherry by 10wt% aqueous acetic acid solution as an extractant. Silk and cotton fabrics were dyed with the cherry extract in the temperature range of $40-80^\circ{C}$ and for the time range of 30-60min. by pre- and post-mordanting with various mordants, their dyeability and fastness were investigated. The natural cherry extract prepared in this study has a maximum absorbance at 520nm. It was found that the optimum dyeing temperature and time were $40^\circ{C}$ and 50min, respectively. The pre-mordanting method was more effective than post-mordanting. All mordants except $SnCl_2\cdot{2H}_2O\;and\;FeSO_4\cdot{7H}_2O$ were effective for silk fabrics. However, the dyeability on cotton fabrics increased in the order of $CrK(SO_4)_2\cdot{12H_2O>(CH_3COO)_2Cu\cdot{H}_2O>CuSO_4\cdot{5H}_2O>AlK(SO_4)_2\cdot{12H}_2O>FeSO_4\cdot{7H}_2O>SnCl_2\cdot{2H}_2O$ among the mordants used in this study Fastness(light, water, washing, perpspiration fastness) on the silk and cotton fabrics increased with using mordants. The post-mordanting using mordant$(CH_3COO)_2Cu\cdot{H}_2O$ among the various mordants in this study gave the best fastness.

  • PDF

Electrical and Optical Properties of ZnO/$SnO_2$:F Thin Films under the Hydrogen Plasma Exposure (ZnO/$SnO_2$:F 박막의 수소플라즈마 처리에 따른 전기적.광학적 특성 변화)

  • Kang, Gi-Hwan;Song, Jin-Soo;Yoon, Kyung-Hoon;Yu, Gwon-Jong;Han, Deuk-Young
    • Proceedings of the KIEE Conference
    • /
    • 1993.07b
    • /
    • pp.1147-1149
    • /
    • 1993
  • ZnO/$SnO_2$:F bilayer films have been prepared by pyrosol deposition method to develop optimum transparent electrode for use in amorphous silicon solar cells. The solution for $SnO_2:F$ film was composed of $SnCl_4{\cdot}5H_2O,\;NH_4F,\;CH_3OH$ and HCl, and ZnO films have been deposited on the $SnO_2:F$ films by using the solution of $ZnO(CH_3COO){_2}{\cdot}2H_2O,\;H_2O\;and\;CH_3OH$. These films have been investigated the variation of electrical and optical properties under the hydrogen plasma exposure. The sheet resistance of the $SnO_2:F$ film was sharply increased and its transmittance was decreased with the blackish effect after plasma treatment. However, the ZnO/$SnO_2:F$ bilayer film was shown hydrogen plasma durability because the electrical and optical properties was almost unchanged more then 60 seconds exposure time.

  • PDF

The effect of additive on $SnO_2$ gas sensor for improving stability ($SnO_2$계 가스 센서의 안정성 향상을 위한 산화물의 첨가 효과)

  • Park, Kwang-Mook;Min, Bong-Ki;Choi, Soon-Don;Nam, Hyo-Duk
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07b
    • /
    • pp.865-868
    • /
    • 2002
  • $SnO_2$ powders were prepare by precipitating $Sn(OH)_4$ from an aqueous solution of $SnCl_4{\cdot}5H_2O$, pH 9.5. The effects of stability and sensitivity of $SnO_2$ thick film sensors added with various amounts, $SiO_2$, $Al_2O_3$, $ZrO_2$, $TiO_2$ have been investigated. It is shown that the 3wt% $Al_2O_3$ or $SiO_2$ can improve the stability of $SnO_2$ gas sensor at an operating temperature of $350^{\circ}C$.

  • PDF

H2 gas sensing characteristics of SnO2 nano-powdersprepared by homogeneous precipitation method (균일침전법을 이용한 SnO2 나노분말의 H2 감지 특성)

  • Kim, Yeong-Bok;Lee, Woon-Young;Park, Jin-Seong
    • Journal of Sensor Science and Technology
    • /
    • v.17 no.5
    • /
    • pp.361-368
    • /
    • 2008
  • Nanosized $SnO_2$ particles were synthesized by homogeneous precipitation method using tin chloride ($SnCl_4{\cdot}5H_{2}O$) and urea ($CO(NH_2)_2$). The powders were heated at $500^{\circ}C$ and $600^{\circ}C$ for 2h. The crystal structure, microstructure, thermal behavior, specific surface area were analyzed using XRD, FE-SEM, TGA and BET, respectively. The initial resistance and the $H_2$ sensing properties were measured as a function of ${Sb_2}{O_3}$ and Pd doping concentrations. The resistance was decreased with the addition of ${Sb_2}{O_3}$ and the sensitivity for $H_2$ gas was increased with the addition of Pd. Thus, the optimum $H_2$ gas sensing property was obtained in the 0.25.mol% ${Sb_2}{O_3}$ and 1.w% added $SnO_2$ powders.

Gas Sensing Characteristics and Preparation of SnO2 Nano Powders (SnO2 나노 분말의 합성 및 가스 감응 특성)

  • Lee, Ji-Young;Yu, Yoon-Sic;Yu, Il
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.7
    • /
    • pp.589-593
    • /
    • 2011
  • [ $SnO_2$ ]nano powders were prepared by solution reduction method using tin chloride($SnCl_2{\cdot}2H_2O$), hydrazine($N_2H_4$) and NaOH. The $SnO_2$ thick films for gas sensors were fabricated by screen printing method on alumina substrates and annealed at $300^{\circ}C$ in air, respectively. XRD patterns of the $SnO_2$ nano powders showed the tetragonal structure with (110) dominant orientation. The particle size of $SnO_2$ nano powders at the ratio of $SnCl_2:N_2H_4$+NaOH= 1:6 was about 60 nm. The sensing characteristics were investigated by measuring the electrical resistance of each sensor in a test box. Sensitivity of $SnO_2$ gas sensor to 5 ppm $CH_4$gas and 5 ppm $CH_3CH_2CH_3$ gas was investigated for various $SnCl_2:N_2H_4$+NaOH proportion. The highest sensitivity to $CH_4$ gas and $CH_3CH_2CH_3$ gas of $SnO_2$ sensors was observed at the $SnCl_2:N_2H_4$+NaOH= 1:8 and $SnCl_2:N_2H_4$+NaOH= 1:6, respectively. Response and recovery times of $SnO_2$ gas sensors prepared by $SnCl_2:N_2H_4$+NaOH= 1:6 was about 40 s and 30 s, respectively.

Preparation and Electrochemical Characterization of SnO2/Ti Electrode by Coating Method (코팅 방법에 따른 SnO2/Ti 전극의 제조 및 전기화학적 특성)

  • Kim Han-Joo;Son Won-Keun;Hong Ji-Sook;Kim Tae-Il;Park Soo-Gil
    • Journal of the Korean Electrochemical Society
    • /
    • v.9 no.2
    • /
    • pp.59-63
    • /
    • 2006
  • The study is coated tin(IV) oxide coated on the titanium substrate electrodes by electrodepositon and dip-coating method and studied about that physical and electrochemical characterization by coating methods. After titanium substrate is etched in HCl, electrodespotion is coated $SnCl_2{\cdot}2H_2O$ in nitrate solution by pulse technique, dip-coating method is also used $SnCl_2{\cdot}2H_2O$ in 1;1V% HCl and coated by dipping and annealing process. tin(IV) oxide coated on titanium substrate electrodes by two coating methods are studied x-ray diffraction (XRD), scanning electron microscopy (SEM) to compare physical characterization of electrode and potential window by cyclic voltammetry (CV) to observe electrochemical characterization.

전기화학증착 방법으로 성장시간에 따라 형성한 SnO2 나노세선의 구조적 성질

  • Lee, Chang-Hun;No, Yeong-Su;Lee, Dae-Uk;Kim, Tae-Hwan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.398-398
    • /
    • 2012
  • SnO2 나노세선은 n-형 전기적 성질과 화학적인 안정성 때문에 가스센서, 투명 전극 및 태양전지와 같은 전자소자와 광소자에 널리 사용되고 있다. 화학 기상 증착, 전자빔 증착과 전기화학증착법을 사용하여 SnO2 나노세선을 제작하고 있다. 여러 가지 증착 방법중에서 전기화학증착방법은 낮은 온도와 진공 공정이 필요하지 않으며 대면적 공정이 가능하고 빠른 성장 속도로 나노구조를 효과적으로 성장할 수 있는 장점을 가지고 있다. 본 연구에서는 전기화학증착법을 이용하여 Indium Tin Oxide (ITO) 기판 위에 SnO2 나노세선 성장하고 성장시간에 따라 형성한 SnO2 나노세선의 구조적 성질을 조사하였다. SnO2 나노세선을 성장하기 위하여 D.I. water와 Entanol을 7:3의 비율로 섞은 용액을 $65^{\circ}C$로 유지하였고, 0.015 M의 Tin chloride pentahydrate ($Cl4{\cdot}Sn{\cdot}5H2O$)를 타겟 물질로 이용하였고, 0.1 M의 Potassium chloride (KCl)를 완충 물질로 사용하였다. 전기화학증착 방법을 사용하여 제작한 ITO 기판위에 성장한 SnO2 나노세선 위에 전극을 제작하고 전류-전압 특성을 측정하였다. SnO2 나노세선이 성장되는 전기화학증착 전압을 1.2 V로 고정하고, 성장시간을 15분, 30분 및 1시간으로 변화하여 SnO2 나노세선의 구조적 특성을 분석하였다. X-선회절 (X-ray diffraction; XRD) 실험 결과는 $31^{\circ}$에서 (101) 성장방향을 갖는 SnO2 나노세선이 성장함을 확인하였고, 성장 시간이 길어짐에 따라(101) 성장방향의 XRD 피크의 intensity가 증가하였다. 전기화학증착 성장 시간이 길어짐에 따라 SnO2 나노세선의 지름이 60 nm에서 150 nm로 변화하는 것을 주사전자현미경으로 관측하였다. 이 실험 결과는 전기화학증착방법을 사용하여 제작한 SnO2 나노세선의 성장 시간에 따른 구조적 특성들을 최적화하여 소자제작에 응용하는데 도움이 된다.

  • PDF

Humidity Characteristics of $SnO_2/TiO_2$ Thick Film Devices ($SnO_2/TiO_2$후막소자의 감습특성)

  • Park, Hyo-Deok;Lee, Deok-Dong
    • Korean Journal of Materials Research
    • /
    • v.2 no.3
    • /
    • pp.163-171
    • /
    • 1992
  • The $SnO_2/TiO_2$ thick film type humidity sensing devices containing 5 to 50 wt% $TiO_2$ have been fabricated by a typical screen printing technique. The surface crystal structure and microstructure were investigated by XRD, SEM and FTIR analyses. And the measurement of sensing characteristics of the thick film devices have been carried out. The crystalline phase of the thick flus were mainly identified as $(SnO_2){\cdot}6T$ crystal structure with XRD analysis, and the thick films sintered at $1300^{\circ}C$ showed an average particle size of $2.0{\mu}m$. The $SnO_2/TiO_2$ device sintered at $1300^{\circ}C$ containing 10 wt% $TiO_2$ showed high sensitivity to humidity in the range of R.H. 20-90%.

  • PDF

Material and Sensing Properties of SnO2 prepared by Sol-Gel Methods (Sol-Gel법에 의한 SnO2의 물성 및 센싱 특성)

  • Park, Bo-Seok;Hong, Kwang-Joon;Kim, Ho-Gi;Park, Jin-Seoung
    • Journal of Sensor Science and Technology
    • /
    • v.11 no.6
    • /
    • pp.327-334
    • /
    • 2002
  • Fine particles of $SnO_2$ were fabricated by the sol-gel powder processing using tine(II) chloride dihydrate($SnCl_2{\cdot}2H_2O$) and ethanol($C_2H_5OH$) as raw materials. The powders were investigated about the properties and electrical sensing. Gel powders were fabricated by drying of sol at $120^{\circ}C$ after aging 72hrs and 168hrs. The amount of $SnO_2$ phase was increased below $600^{\circ}C$ due to the elimination of volatile components, and the $SnO_2$ phase was almost completed by the heat treatment at $700^{\circ}C$ for 30min. The grain sizes were about 30nm below $700^{\circ}C$, and it showed the narrow distribution of the grain sizes. The specimens to measure electrical properties were fabricated by the thick film screen printing technique on the alumina substrates. The conductance of $SnO_2$ was showed the intrinsic behaviour of semiconducting ceramics above at $450^{\circ}C$. The constant conductance was observed in the temperature range of $200{\sim}450^{\circ}C$. The sensing properties of response time, recovery, and sensitivity of CO were improved with aging time.