• 제목/요약/키워드: $2{\alpha}$ angle

검색결과 225건 처리시간 0.019초

Flow interference between two tripped cylinders

  • Alam, Md. Mahbub;Kim, Sangil;Maiti, Dilip Kumar
    • Wind and Structures
    • /
    • 제23권2호
    • /
    • pp.109-125
    • /
    • 2016
  • Flow interference is investigated between two tripped cylinders of identical diameter D at stagger angle ${\alpha}=0^{\circ}{\sim}180^{\circ}$ and gap spacing ratio $P^*$ (= P/D) = 0.1 ~ 5, where ${\alpha}$ is the angle between the freestream velocity and the line connecting the cylinder centers, and P is the gap width between the cylinders. Two tripwires, each of diameter 0.1D, were attached on each cylinder at azimuthal angle ${\beta}={\pm}30^{\circ}$, respectively. Time-mean drag coefficient ($C_D$) and fluctuating drag ($C_{Df}$) and lift ($C_{Lf}$) coefficients on the two tripped cylinders were measured and compared with those on plain cylinders. We also conducted surface pressure measurements to assimilate the fluid dynamics around the cylinders. $C_D$, $C_{Df}$ and $C_{Lf}$ all for the plain cylinders are strong function of ${\alpha}$ and $P^*$ due to strong mutual interference between the cylinders, connected to six interactions (Alam and Meyer 2011), namely boundary layer and cylinder, shear-layer/wake and cylinder, shear layer and shear layer, vortex and cylinder, vortex and shear layer, and vortex and vortex interactions. $C_D$, $C_{Df}$ and $C_{Lf}$ are very large for vortex and cylinder, vortex and shear layer, and vortex and vortex interactions, i.e., the interactions where vortex is involved. On the other hand, the interference as well as the strong interactions involving vortices is suppressed for the tripped cylinders, resulting in insignificant variations in $C_D$, $C_{Df}$ and $C_{Lf}$ with ${\alpha}$ and $P^*$. In most of the (${\alpha}$, $P^*$ ) region, the suppressions in $C_D$, $C_{Df}$ and $C_{Lf}$ are about 58%, 65% and 85%, respectively, with maximum suppressions 60%, 80% and 90%.

Comparing the Stability of Geometrically rigid Tricyclopropyl Carbinyl Cations by $^{19}$F NMR Spectroscopy

  • Shin, Jung-Hyu;Kim, Kyong-Tae;Shin, Hun-Woo
    • Bulletin of the Korean Chemical Society
    • /
    • 제8권3호
    • /
    • pp.144-145
    • /
    • 1987
  • The relative stability as function of geometry in the rigid tricyclopropylcarbinyl cations with varied bond angle (${\alpha}$) between the plane of cyclopropane ring and the bond connecting cyclopropane ring to cationic carbon was examined by $^{19}F$ nmr spectroscopy. 7-p-Fluorophenyltricyclo[2.2.2.$0^{2,6}$]octan-7-yl(4) and 8-p-fluorophenyltricyclo[3.2.2.$0^{2,7}$]nonan-8-yl cation (8) were generated from corresponding tertiary alcohols under stable ion conditions, and their $^{19}F$ chemical shifts were compared with those of model compounds such as 7-nortricyclyl cation (3) and tricyclo[3.3.1.$0^{2,7}$]octan-8-yl cation (7). Consequently, it is concluded that the varied orientation of bond angle (${\alpha}$) within in the bisected conformation does not affect degree of the charge delocalization into cyclopropane ring.

경사각을 갖는 비극성 a-GaN용 R-면 사파이어 기판의 제조 및 특성 (Fabrication and characterization of tilted R-plane sapphire wafer for nonpolar a-plane GaN)

  • 강진기;김영진
    • 한국결정성장학회지
    • /
    • 제21권5호
    • /
    • pp.187-192
    • /
    • 2011
  • 비극성 a-GaN의 성장 시 기판의 경사각은 GaN epi의 품질을 결정하는 중요한 변수로서 양질의 a-GaN 성장을 위해서는 R-면 기판의 경사각이 정밀하게 제어된 기판이 요구된다. 본 연구에서는 R-면 기판의 경사각 ${\alpha}$${\beta}$의 목표값이 각각 0, -0.1, -0.15, -0.2, -0.4, $-0.6^{\circ}$와 -0.1, 0, $0.1^{\circ}$인 절단기판을 제조하였다. 절단기판의 경사각을 x-ray를 이용하여 측정하고 통계적인 분석을 통해 기판의 경사각 제어공정에 대한 신뢰성을 평가하였으며, R-면 기판의 경사각의 공차는 ${\pm}0.03^{\circ}$의 값을 가졌다. R-면 기판은 상대적으로 큰 이방성에 의해 c-면 기판에 비해 휨(BOW)과 두께편차(TTV)가 상대적으로 큰 분포를 갖는 것으로 나타났다. AFM을 이용하여 기판 표면을 관찰한 결과, 측정된 R-면기판의 step 높이는 0.2~0.4 nm로 거의 일정한 값을 가졌으며 step 너비는 경사각 ${\alpha}$가 증가함에 따라 156 nm에서 26 nm로 감소하였으며 이와같은 R-면 기판의 step 구조의 변화는 epi 성장에 큰 영향을 미치는 것으로 판단된다.

동력경운기의 경사지견인 및 주행특성에 관한 연구 (II)-동력경운기-트레일러계의 욍골동 및 동횡전도한계 (Study on the Travel and Tractive Characteristics of The Two-Wheel Tractor on the General Slope Ground (II)-Dynamic Side-overturn of the Tiller-trailer System-)

  • 송현갑;정창주
    • Journal of Biosystems Engineering
    • /
    • 제3권1호
    • /
    • pp.1-19
    • /
    • 1978
  • Power tiller is a major unit of agricultural machinery being used on farms in Korea. About 180.000 units are introduced by 1977 and the demand for power tiller is continuously increasing as the farm mechanization progress. Major farming operations done by power tiller are the tillage, pumping, spraying, threshing, and hauling by exchanging the corresponding implements. In addition to their use on a relatively mild slope ground at present, it is also expected that many of power tillers could be operated on much inclined land to be developed by upland enlargement programmed. Therefore, research should be undertaken to solve many problems related to an effective untilization of power tillers on slope ground. The major objective of this study was to find out the travelling and tractive characteristics of power tillers being operated on general slope ground.In order to find out the critical travelling velocity and stability limit of slope ground for the side sliding and the dynamic side overturn of the tiller and tiller-trailer system, the mathematical model was developed based on a simplified physical model. The results analyzed through the model may be summarized as follows; (1) In case of no collision with an obstacle on ground, the equation of the dynamic side overturn developed was: $$\sum_n^{i=1}W_ia_s(cos\alpha cos\phi-{\frac {C_1V^2sin\phi}{gRcos\beta})-I_{AB}\frac {v^2}{Rr}}=0$$ In case of collision with an obstacle on ground, the equation was: $$\sum_n^{i=1}W_ia_s\{cos\alpha(1-sin\phi_1)-{\frac {C_1V^2sin\phi}{gRcos\beta}\}-\frac {1}{2}I_{TP} \( {\frac {2kV_2} {d_1+d_2}\)-I_{AB}{\frac{V^2}{Rr}} \( \frac {\pi}{2}-\frac {\pi}{180}\phi_2 \} = 0 $$ (2) As the angle of steering direction was increased, the critical travelling veloc\ulcornerities of side sliding and dynamic side overturn were decreased. (3) The critical travelling velocity was influenced by both the side slope angle .and the direct angle. In case of no collision with an obstacle, the critical velocity $V_c$ was 2.76-4.83m/sec at $\alpha=0^\circ$, $\beta=20^\circ$ ; and in case of collision with an obstacle, the critical velocity $V_{cc}$ was 1.39-1.5m/sec at $\alpha=0^\circ$, $\beta=20^\circ$ (4) In case of no collision with an obstacle, the dynamic side overturn was stimu\ulcornerlated by the carrying load but in case of collision with an obstacle, the danger of the dynamic side overturn was decreased by the carrying load. (5) When the system travels downward with the first set of high speed the limit {)f slope angle of side sliding was $\beta=5^\circ-10^\circ$ and when travels upward with the first set of high speed, the limit of angle of side sliding was $\beta=10^\circ-17.4^\circ$ (6) In case of running downward with the first set of high speed and collision with an obstacle, the limit of slope angle of the dynamic side overturn was = $12^\circ-17^\circ$ and in case of running upward with the first set of high speed and collision <>f upper wheels with an obstacle, the limit of slope angle of dynamic side overturn collision of upper wheels against an obstacle was $\beta=22^\circ-33^\circ$ at $\alpha=0^\circ -17.4^\circ$, respectively. (7) In case of running up and downward with the first set of high speed and no collision with an obstacle, the limit of slope angle of dynamic side overturn was $\beta=30^\circ-35^\circ$ (8) When the power tiller without implement attached travels up and down on the general slope ground with first set of high speed, the limit of slope angle of dynamic side overturn was $\beta=32^\circ-39^\circ$ in case of no collision with an obstacle, and $\beta=11^\circ-22^\circ$ in case of collision with an obstacle, respectively.

  • PDF

빗각 증착으로 제조된 TiN 박막의 특성 (Properties of TiN Films Fabricated by Oblique Angle Deposition)

  • 정재훈;양지훈;박혜선;송민아;정재인
    • 한국표면공학회지
    • /
    • 제45권3호
    • /
    • pp.106-110
    • /
    • 2012
  • Oblique angle deposition (OAD) is a physical vapor deposition where incident vapor flux arrives at non-normal angles. It has been known that tilting the substrate changes the properties of the film, which is thought to be a result of morphological change of the film. In this study, OAD has been applied to prepare single and multilayer TiN films by cathodic arc deposition. TiN films have been deposited on cold-rolled steel sheets and stainless steel sheet. The deposition angle as well as substrate temperature and substrate bias was changed to investigate their effects on the properties of TiN films. TiN films were analyzed by color difference meter, scanning electron microscopy, nanoindenter and x-ray diffraction. The color of TiN films was not much changed according to the deposition conditions. The slanted and zigzag structures were observed from the single and multilayer films. The relation between substrate tilting angle (${\alpha}$) and the growth column angle (${\beta}$) followed the equation of $tan{\alpha}=2tan{\beta}$. The indentation hardness of TiN films deposited by OAD was low compared with the ones prepared at normal angle. However, it has been found that $H^3/E^2$ ratio of 3-layer TiN films prepared at OAD condition was a little higher than the ones prepared at normal angle, which can confirm the robustness of prepared films.

정적 RAM 특성 요소에 의한 소프트 에러율의 해석 (Analysis of Accelerated Soft Error Rate for Characteristic Parameters on Static RAM)

  • 공명국;왕진석;김도우
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제55권4호
    • /
    • pp.199-203
    • /
    • 2006
  • This paper presents an ASER (Accelerated Soft Error Rate) integral model. The model is based on the facts that the generated EHP/s(electron hole pairs) are diminished after some residual range of the incident alpha particle, where residual range is a function of the incident angle and the capping layer thickness over the semiconductor junction. The ASER is influenced by the flux of the alpha particles, the junction area ratio, the alpha particle incident angle when the critical charge is same as the collected charge, and the sizes of the alpha source and the chip. The model was examined with 8M static RAM samples. The measured ASER data showed good agreement with the calculated values using the model. The ASER decreased exponentially with respect to the operational voltage. As the capping layer thickness increases up to $16{\mu}m$, the ASER increases, and after that thickness, the ASER decreases. The ASER increased as the depth of BNW increased from $0{\mu}m\;to\;4{\mu}m$. and then saturated. The ASER decreased as the node capacitance increased from 2fF to 5fF.

The molecular structure of (+) -6-methoxy-.alpha. 1-2-naphtha-leneacetic acid determined by X-Ray method

  • Kim, Yang-Bae;Song, Hyun-June
    • Archives of Pharmacal Research
    • /
    • 제7권2호
    • /
    • pp.137-139
    • /
    • 1984
  • The molecular structure of (+)-6-Me hoxy-.alpha.-methyl-2-naphthaleneacetic acid (Naproxen), $C_{14}H_{14}O_{ 3}$, was determined by X-Ray diffraction technique. Naproxen crystallized in $P2_1$ with two molecules on the unit cell of dimensions a = 7.855, b = 5.783, c = 13.347$\AA$ and $\beta$ = $93.9^{\circ}$

  • PDF

로우터리 맥류파종기 경운날의 개량시험 (Improvement of Rotary Tine for Barley Seeder Attached to Rotary Tiller)

  • 김성래;김문규;김기대;허윤근
    • Journal of Biosystems Engineering
    • /
    • 제4권1호
    • /
    • pp.1-23
    • /
    • 1979
  • The use of barley seeder attached to rotary tiller in the rural area has a significant meaning not only for the solution of labor peak season, but also for the increase of land utilization efficiency. The facts that presently being used barley seeders are all based on the mechanical principles of the reverse rotation, center drive and are all using forward rotating tine, which is used to be easily and heavily worn out when it rotates reversely, raise problem of recommending them to rural area in Korea. Therefore, the main objective of the study was to develop new type of rotary tine attachable to barley seeders. To attain the objective the following approaches were applied. (1) The kinematic analysis of reverse rotating barley seeders. (2) The studies on the soil bin and artificial soil. (3) The comparative experiment on the power requirement of prototype tine. The results obtained from the studies are summarized as follow: 1. The kinematic analysis of barley seeder attached to rotary tiller: The following results were obtained from the kinematic analysis for deriving general formulae of the motion and velocity characterizing the rotary tine of barley seeders presently being used by farmers. a) The position vector (P) of edge point (P) in the rotary tine of reverse rotating, center drive was obtained by the following formula. $$P=(vt+Rcos wt)i+Rsin wt j+ \{ Rcos \theta r sin \alpha cos (wt- \beta +\theta r) +Rsin \theta r sin \alpha sin (wt-\beta + \theta r) \} lk $$ b) The velocity of edge point $(P^')$ of reverse rotating, center drive rotary tine was obtained by the following formula. $$(P^')=(V-wR sin wt)i+(w\cdot Rcoswt)j + \{ -w\cdot Rcos \theta r\cdot sin \alpha \cdot sin (wt-\beta +\theta r) + w\cdot Rsin \theta r\cdot sin \alpha \cdot cos (wt- \beta + \theta r \} k $$ c) In order to reduce the power requirement of rotary tine, the angle between holder and edge point was desired to be reduced. d) In order to reduce the power requirement, the edge point of rotary tine should be moved from the angle at the begining of cutting to center line of machine, and the additional cutting width should be also reduced. 2. The studies on the soil bin and artificial soil: In order to measure the power requirement of various cutting tines under the same physical condition of soil, the indoor experiments Viere conducted by filling soil bin with artificially made soil similar to the common paddy soil and the results were as follows: a) When the rolling frequencies$(x)$ of the artificial soil were increased, the densIty$(Y)$ was also increased as follows: $$y=1.073200 +0.070780x - 0.002263x^2 (g/cm^3)$$ b) The absolute hardness $(Y)$ of soil had following relationship with the rolling frequencies$(x)$ and were increased as the rolling frequencies were increased. $$Y=37.74 - \frac {0.64 + 0.17x-0. 0054x^2} {(3.36-0.17x + 0.0054x^2)^3} (kg/cm^3)$$ c) The density of soil had significant effect on the cohesion and angle of internal friction of soil. For instance, the soil with density of 1.6 to 1.75 had equivalent density of sandy loam soil with 29.5% of natural soil moisture content. d) The coefficient of kinetiic friction of iron plate on artificial soil was 0.31 to 0.41 and was comparable with that of the natural soil. e) When the pulling speed of soil bin was the 2nd forward speed of power tiller, the rpm of driving shaft of rotary was similar to that of power tiller, soil bin apparatus is indicating the good indoor tester. 3. The comparative experiment on the power requirement of prototype tine of reverse rotating rotary: According to the preliminary test of rotary tine developed with various degrees of angle between holder and edge pcint due to the kinematic analysis, comparative test between prototype rotary tine with $30 ^\circ $ and $10 ^\circ$ of it and presently being used rotary tine was carried out 2nd the results were as follows: a) The total cutting torque was low when the angle between holder and edge point was reduced. b) $\theta r$ (angle between holder and edge point) of rotary tine seemed to be one: of the factors maximizing the increase of torque. c) As the angle between holder and edge point ($\theta r$) of rotary tine was $30 ^\circ $ rather than $45 ^\circ $, the angle of rotation during cutting soil was reduced and the total cutting torque was accordingly reduced about 10%, and the reduction efficiency of total cutting torque was low when the angle between holder and edge point ($\theta r$) of rotary tine was $10 ^\circ $, which indicates that the proper angle between holder and edge point of rotary tine should be larger than $10 ^\circ $ and smaller than $30 ^\circ $ . From above results, it could be concluded that the use of the prototype rotary tine which reduced the angle between holder and edge point to $30 ^\circ $, insted of $45 ^\circ $, is disirable not only decreasing the power requirements, but also increasing the durabie hour of it. Also forward researches are needed, WIlich determine the optimum tilted angle of rotary brocket, and rearrangement of the rotary tine on the rotary boss.

  • PDF

MO Theoretical Studies on the Effect of Bond Angle Distortion in Pyrazine

  • Lee, Ik-Choon;Kim, Ho-Soon
    • Bulletin of the Korean Chemical Society
    • /
    • 제5권2호
    • /
    • pp.68-73
    • /
    • 1984
  • An enhancement of through-bond interaction by bond angle distortion in pyrazine was examined using various MO methods. Results of MINDO/3 geometry optimization with an angle (${\alpha}$) at $C_2$ atom fixed to 120∼90$^{\circ}$ lead to distorted structures in which the distorted bond is brought closer toward lone pair orbital n of N atom. It was also found that the bond angle distortion increased the P character at the atom $C_2$, resulting in an increased vicinal overlap between n and the $C_2-C_3$ bond. The FMO patterns of ${\sigma}$ framework showed three-fold degeneracy, one of which was of different symmetry which mixes in the symmetry adapted pair, $n_+\;and\;n_-;\;both\;n_+\;and\;n_-$ orbitals thus can interact with both FMOs of the ${\sigma}$ framework. The LCBO-MO analysis with partial elimination of bonds, antibonds or both, however, revealed that the main interaction of $n_+$ was with the HO-${\sigma}$ and that of $n_-$ was with the LU-${\sigma}^{\ast}$ orbital of the ${\sigma}$ framework.

Development of Optical Sighting System for Moving Target Tracking

  • Jeung, Bo-Sun;Lim, Sung-Soo;Lee, Dong-Hee
    • Current Optics and Photonics
    • /
    • 제3권2호
    • /
    • pp.154-163
    • /
    • 2019
  • In this study, we developed an optical sighting system capable of shooting at a long-distance target by operating a digital gyro mirror composed of a gyro sensor and an FSM. The optical sighting system consists of a reticle part, a digital gyro mirror (FSM), a parallax correction lens, a reticle-ray reflection mirror, and a partial reflection window. In order to obtain the optimal volume and to calculate the leading angle range according to the driving angle of the FSM, a calculation program using Euler rotation angles and a three-dimensional reflection matrix was developed. With this program we have confirmed that the horizontal leading angle of the developed optical sighting system can be implemented under about ${\pm}8^{\circ}$ for the maximum horizontal driving angle (${\beta}={\pm}12.5^{\circ}$) of the current FSM. Also, if the ${\beta}$ horizontal driving angle of the FSM is under about ${\pm}15.5^{\circ}$, it can be confirmed that the horizontal direction leading angle can be under ${\pm}10.0^{\circ}$. If diagonal leading angles are allowed, we confirmed that we can achieve a diagonal leading angle of ${\pm}10.0^{\circ}$ with a vertical driving angle ${\alpha}$ of ${\pm}7.1^{\circ}$ and horizontal driving angle ${\beta}$ of ${\pm}12.5^{\circ}$.