• 제목/요약/키워드: $2^k$ factorial design

검색결과 467건 처리시간 0.035초

양돈용 사료 첨가제 개발을 위하여 구기자 부산물로부터 메탄올수용액을 이용한 총 폴리페놀 추출조건 최적화 (Optimization of Aqueous Methanol Extraction Condition of Total Polyphenol from Spent $Lycium$ $chinense$ Miller to Develop Feed Additives for Pig)

  • 심관섭;나종삼;오성진;최낙진
    • 한국유기농업학회지
    • /
    • 제20권1호
    • /
    • pp.91-99
    • /
    • 2012
  • This study was conducted to develop a functional feed additive for pig with spent $Lycium$ $chinense$ Mill fruit. We investigated the optimum conditions for the extraction of polyphenol from spent $Lycium$ $chinense$ Mill using methanol. Methanol concentration as a solvent for extraction, extraction time and the volume of solvent per a gram of solid (ground spent Lyceum chinense Mill) were selected as parameters. Three levels of parameters were configured according to Box Behnken experiment design, a fractional factorial design, and total 15 trials were employed. Total polyphenol concentration from each trial was used as response from experiment system and effects of parameters on total polyphenol extraction efficiency were determined using response surface model. As a result, all terms in analysis of variance, regression ($p$ = 0.001), linear ($p$ = 0.002), square ($p$ = 0.017) and interaction ($p$ = 0.047) was significant and adjusted determination coefficient ($R^2$) was 94.7%. Total polyphenol extraction efficiency was elevated along increased methanol content and decreased solvent to solid ratio. However extraction time did not affect the efficiency. This study provides a primary information for the optimum extraction conditions to maximize total polyphenol recovery from spent Lycium chinens Mill fruit and this result could be applied to re-use of argo-industrial by-products and to develop of functional feed additives in organic farming.

원심펌프 측면흡입구의 유동특성에 관한 수치해석적 연구 (A Numerical Study on the Flow Characteristics of Side-suction Inlet Geometry for Centrifugal Pump)

  • 김성;최영석;이경용
    • 한국유체기계학회 논문집
    • /
    • 제12권6호
    • /
    • pp.7-12
    • /
    • 2009
  • This paper presents a numerical study on the design of side-suction inlet geometry which is used for multi stage centrifugal pumps or inline centrifugal pumps. In order to achieve an optimum inlet geometry and to explain the interactions between the different geometric configurations, the three dimensional computational fluid dynamics and the design of experiment methods have been applied. Geometric design variables describing the cross sectional area distribution through the inlet were selected. The objective functions are defined as the non-uniformity of the velocity distribution at the passage exit which is just in front of the impeller eyes. From the 2k factorial design results, the most important design variable was found and the performance of the side suction inlet was improved compared to the base line shape.

Application of Factorial Experimental Designs for Optimization of Cyclosporin A Production by Tolypocladium inflatum in Submerged Culture

  • Abdel-Fattah, Y.R.;Enshasy, H. El;Anwar, M.;Omar, H.;Abolmagd, E.
    • Journal of Microbiology and Biotechnology
    • /
    • 제17권12호
    • /
    • pp.1930-1936
    • /
    • 2007
  • A sequential optimization strategy based on statistical experimental designs was employed to enhance the production of cyclosporin A (CyA) by Tolypocladium inflatum DSMZ 915 in a submerged culture. A 2-level Plackett-Burman design was used to screen the bioprocess parameters significantly influencing CyA production. Among the 11 variables tested, sucrose, ammonium sulfate, and soluble starch were selected, owing to their significant positive effect on CyA production. A response surface methodology (RSM) involving a 3-level Box-Behnken design was adopted to acquire the best process conditions. Thus, a polynomial model was created to correlate the relationship between the three variables and the CyA yield, and the optimal combination of the major media constituents for cyclosporin A production, evaluated using the nonlinear optimization algorithm of EXCEL-Solver, was as follows (g/l): sucrose, 20; starch, 20; and ammonium sulfate, 10. The predicted optimum CyA yield was 113 mg/l, which was 2-fold the amount obtained with the basal medium. Experimental verification of the predicted model resulted in a CyA yield of 110 mg/l, representing 97% of the theoretically calculated yield.

The Comparative Power Evaluation of Parametric Versus Nonparametric Methods

  • Choi, Young-Hun
    • Communications for Statistical Applications and Methods
    • /
    • 제3권3호
    • /
    • pp.283-290
    • /
    • 1996
  • The simulation study shows that the rank transform test has relatively superior power advantages over the parametric analysis of variance test in many cases for a $2^3$ factorial design, particularly with heavy-tailed distributions of the error terms. However the rank transform test should be cautiously used when all main effects and interactions related to a testing effect are possibly present at the same time.

  • PDF

Design Optimization of Mixed-flow Pump in a Fixed Meridional Shape

  • Kim, Sung;Choi, Young-Seok;Lee, Kyoung-Yong;Kim, Jun-Ho
    • International Journal of Fluid Machinery and Systems
    • /
    • 제4권1호
    • /
    • pp.14-24
    • /
    • 2011
  • In this paper, design optimization for mixed-flow pump impellers and diffusers has been studied using a commercial computational fluid dynamics (CFD) code and DOE (design of experiments). We also discussed how to improve the performance of the mixed-flow pump by designing the impeller and diffuser. Geometric design variables were defined by the vane plane development, which indicates the blade-angle distributions and length of the impeller and diffusers. The vane plane development was controlled using the blade-angle in a fixed meridional shape. First, the design optimization of the defined impeller geometric variables was achieved, and then the flow characteristics were analyzed in the point of incidence angle at the diffuser leading edge for the optimized impeller. Next, design optimizations of the defined diffuser shape variables were performed. The importance of the geometric design variables was analyzed using $2^k$ factorial designs, and the design optimization of the geometric variables was determined using the response surface method (RSM). The objective functions were defined as the total head and the total efficiency at the design flow rate. Based on the comparison of CFD results between the optimized pump and base design models, the reason for the performance improvement was discussed.

정역 회전법에 의한 고순도 알루미늄의 응고 및 정련에 관한 연구 (A Study on the Solidification and Purification of High Purity Aluminium Alternate Stirring Method)

  • 김욱;이종기;백홍구;허성강
    • 한국주조공학회지
    • /
    • 제12권3호
    • /
    • pp.220-229
    • /
    • 1992
  • The degree of purification and the macrostructure of high purity aluminium were studied through the alternate stirring method in order to improve the nonuniformity of solute concentration in the unidirectional stirring method. The $2^3$ factorial design was done to examine the effects of experimental factors more qualitatively. In the relatively low stirring speed of 1500 rpm with alternate stirring mode, the uniform solute profile and refined grain structure were obtained due to strong washing effect and turbulent fluid flow. It was induced by the transition of the momentum boundary layer by alternation of the stirrer. It was concluded from this study that the alternate stirring mode was more effective to obtain the uniformity of solute even in the stirring speed of 1500 rpm. But the degree of purification decreased below the critical alternating period. When 2N(99.8wt.%) aluminium was used as the starting material the morphology of solid-liquid showed the cellular shape and the columnar grains were inclined to the direction of rotation. This inclined grain growth resulted from the difference of relative velocities of solid and liquid. The inclined angle was increased as the stirring speed increased and solidification proceeded. In the case of 4N aluminium, there was no inclined grain growth and it was confirmed from the macrostructure and SEM work that the morphology of solid-liquid interface was planar. From the factorial design, it was found that the alternate stirring mode showed poorer purification effect than that of unidirectional stirring mode at low speed(500 rpm). In addition, the factor that had the most significant effect on the degree of purification was the stirring speed.

  • PDF

Statistical Optimization of the Medium Components for the Production of Protopectinases by Bacillus subtilis

  • Shahbazian, Nafise;Ashtiani, Farzin Zokaee;Bonakdarpour, Babak
    • Food Science and Biotechnology
    • /
    • 제18권2호
    • /
    • pp.442-448
    • /
    • 2009
  • In this study Bacillus subtilis PTCC 1023 was used for the production of protopectinase using soybean based media. The use of isolated soybean protein (ISP) and soybean flour resulted in similar protopectinase production and growth rates. The effect of medium composition on protopectinase production was studied using central composite design (CCD) methodology. The change in the concentration of ISP (1-7%), glucose (0-10%), and phosphate (0.1-0.3 M) was found to affect the protopectinase activity (response variable) after 24 hr of cultivation. In the range studied, ISP and glucose had a negative effect on the response variable, whereas phosphate had a positive effect. A statistically significant interaction was identified between phosphate and ISP, suggesting that correct optimization of medium formulation in this case can only be obtained using factorial design of experiments. Protopectinase activity exceeding 215 U/mL was obtained in a medium containing 4% ISP, 0.3M phosphate, and no added sugar.

A Taguchi Approach to Parameter Setting in a Genetic Algorithm for General Job Shop Scheduling Problem

  • Sun, Ji Ung
    • Industrial Engineering and Management Systems
    • /
    • 제6권2호
    • /
    • pp.119-124
    • /
    • 2007
  • The most difficult and time-intensive issue in the successful implementation of genetic algorithms is to find good parameter setting, one of the most popular subjects of current research in genetic algorithms. In this study, we present a new efficient experimental design method for parameter optimization in a genetic algorithm for general job shop scheduling problem using the Taguchi method. Four genetic parameters including the population size, the crossover rate, the mutation rate, and the stopping condition are treated as design factors. For the performance characteristic, makespan is adopted. The number of jobs, the number of operations required to be processed in each job, and the number of machines are considered as noise factors in generating various job shop environments. A robust design experiment with inner and outer orthogonal arrays is conducted by computer simulation, and the optimal parameter setting is presented which consists of a combination of the level of each design factor. The validity of the optimal parameter setting is investigated by comparing its SN ratios with those obtained by an experiment with full factorial designs.

순차적 실험계획법을 이용한 MOF-801 합성공정 최적화 (Optimization of MOF-801 Synthesis Using Sequential Design of Experiments)

  • 이민형;유계상
    • 공업화학
    • /
    • 제32권6호
    • /
    • pp.621-626
    • /
    • 2021
  • MOF-801 합성공정의 최적화를 위해 순차적인 실험 계획법을 이용하였다. 먼저 screening을 위한 완전 2-요인 설계와 이후 반응표면 분석법 중에 하나인 중심합성 계획법을 연속적으로 사용하였다. 두 가지 반응변수인 MOF-801의 결정화도와 BET 비표면적 중에 실험계획법에 보다 적합한 변수를 선택하기 위하여 fumaric acid, dimethylformamide (DMF) 및 formic acid의 몰비를 이용한 23 요인 설계법을 수행하였다. MINITAB 19 소프트웨어에 따라 설계된 8번의 MOF-801 합성 실험을 수행한 이후 XRD 분석 및 질소흡착법을 이용하여 특성분석을 수행하였다. 두 가지 반응변수 중 결정화도의 R2이 0.999로 BET 비표면적보다 실험계획법에 보다 적합하였다. 분산 분석(ANOVA)을 통해 fumaric acid와 formic acid의 몰 비가 MOF-801의 결정화도를 결정하는 주요 인자임을 확인하였다. response optimization과 두 인자의 contour plot을 통해 최적의 몰비는 ZrOCl2·8H2O : fumaric acid : DMF : formic acid = 1 : 1: 39 : 35로 추정되었다. 이후 합성반응 공정의 최적화를 위해 도출된 전구체의 몰 비 조건에서 합성 기간과 온도에 대한 박스-벤켄설계법을 수행하였다. 설계된 9번의 합성실험을 통해 도출된 결과를 2차 모델 방정식을 이용하여 계산하였다. 이를 이용하여 MOF-801의 최대 결정화도는 합성시간 7.8 h 그리고 합성온도 123 ℃의 조건에서 얻을 수 있음을 예측하였다.

손상대를 고려한 암반사면 안정성 평가 및 인자분석 (Assessment of Rock Slope Stability and Factor Analysis with a Consideration of a Damaged Zone)

  • 김진수;권상기;천대성;박의섭
    • 터널과지하공간
    • /
    • 제24권3호
    • /
    • pp.187-200
    • /
    • 2014
  • 굴착 또는 발파 후 암반손상대 내 암반 물성은 응력재분배나 발파충격에 의해 영구히 약화된다. 본 논문에서는 이러한 암반손상대를 사면에 적용하였다. 손상대 유 무에 따라 2차원 모델링을 통해 암반사면의 역학적 정성을 비교하고 안전율에 영향을 미치는 인자를 분석하는 것이 본 연구의 목적이다. 모델링 결과 사면의 역학적 안정성은 손상대 유 무에 따라 현저하게 차이가 있었다. 특히 손상대를 고려한 안전율은 고려하지 않을 때 보다 약 49.4%가 감소하였다. 부분요인설계법을 이용하여 안전율에 관한 인자 분석을 실시한 결과 안전율에 영향을 미치는 주요 인자는 사면 경사, 점착력, 내부마찰각, 높이였다.