• Title/Summary/Keyword: $17{\alpha}$-Ethynylestradiol

Search Result 7, Processing Time 0.022 seconds

Photodegradation of 17α-ethynylestradiol in nitrate aqueous solutions

  • Ren, Dong;Bi, Tingting;Gao, Shumei;Li, Xukun;Huang, Bin;Pan, Xuejun
    • Environmental Engineering Research
    • /
    • v.21 no.2
    • /
    • pp.188-195
    • /
    • 2016
  • $17{\alpha}$-Ethynylestradiol (EE2) has gotten growing concerns due to its widely detected in the environment and high estrogenic potency. However, the knowledge on the photochemical behaviors of EE2 in natural waters is still limited. Herein, the photodegradation and estrogenic potency variation of EE2 induced by nitrate were studied using a sunlight simulator consisted by a 300 W medium pressure mercury lamp and 290 nm cut-off filters. It was found that EE2 could be photodegraded at a rate of $0.0193h^{-1}$ in pure aqueous solutions, and the photodegradation of EE2 could be significantly promoted by nitrate. The photodegradation removal rate of EE2 was increased from 9% in Milli-Q water to 85% in 2.0 mM nitrate solutions. Reactive species scavenging experiments demonstrated that the photogenerated $HO{\bullet}$ contributed about 55% to EE2 degradation. Fe(III), Cl- and dissolved humic acid (DHA) could inhibit the photodegradation of EE2 by competing the incident light and photogenerated $HO{\bullet}$, while $HCO_3{^-}$ had no influence on EE2 photodegradation. EE2 was determined to be phototransformed into organic chemicals without estrogenic potency by GC-MS and MCF-7 cell proliferation toxicity tests. These findings could extend our knowledge on the photochemical behaviors of steroid estrogens and provide information for ecological risk assessment.

Oxidation of Endocrine Disrupting Chemicals Using Sodium Persulfate (과황산나트륨을 이용한 내분비계장애물질 산화제거)

  • Lim, Chan Soo;Yun, Yeo Bog;Kim, Do Gun;Ko, Seok Oh
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.2
    • /
    • pp.609-617
    • /
    • 2013
  • The objective of this study was to evaluate the oxidation method to remove endocrine disrupting chemicals in reverse osmosis(RO) retentate for the reuse of wastewater effluent. Oxidation of organic pollutants was induced by the persulfate catalyzed by Fe(II). Affecting factors such as initial pH and ionic strength on the Fe(II) catalyzed persulfate oxidation were evaluated. $17{\alpha}$-ethynylestradiol (EE2) degradation efficiency decreased as pH and ionic strength increased. However, the efficiency increased as chloride ion concentration increased due to the influence of radical transfer.

Mobility of silver nanoparticles (AgNPs) and oxidative degradation of endocrine disrupting chemicals by saturated column experiments (포화컬럼실험에서 산화공정을 적용한 내분비계 장애물질의 제거 및 은나노물질의 거동 연구)

  • Kim, Yejin;Heo, Jiyong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.32 no.6
    • /
    • pp.499-505
    • /
    • 2018
  • We applied column experiments to investigate the environmental fate and transport of silver nanoparticles(AgNPs) in fully saturated conditions of porous media. These column experiments were performed to emphasize oxidation method with $H_2O_2$ concentration and acidic conditions. The mobility of AgNPs was decreased with the increasing ionic strength that the surface charge of AgNPs(zeta potential) was neutralized with the presence of positive ions of $Na^+$. Additionally, it was also affected due to that not only more increased aggregated size of AgNPs and surface charge of quartz sand. The decreased breakthrough curves(BTCs) of bisphenol-A(BPA) and $17{\alpha}$-ethynylestradiol(EE2) were removed approximately 35.3 and 40%. This is due to that endocrine disrupting chemicals(EDCs) were removed with the release of $OH{\cdot}$ radicals by the fenton-like mechanisms from acidic and fenton-like reagent presenting. This results considered that higher input AgNPs with acidic conditions is proved to realistic in-situ oxidation method. Overall, it should be emphasized that a set of column experiments employed with adjusting pH and $H_2O_2$ concentration in proved to be effective method having potential ability of in-situ degradation for removing organic contaminants such as BPA and EE2.

Reduction of Estrogenic Activity by Gamma-ray Treatment (감마선 처리에 의한 에스트로겐 활성 저감 연구)

  • Kang, Sung-Wook;Seo, Jaehwan;Lee, Byoung Cheun;Kim, Suejin;Jung, Jinho
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.6
    • /
    • pp.948-953
    • /
    • 2010
  • In this study, degradation of estrone (E1) and $17{\alpha}$-ethynylestradiol (EE2) by gamma-irradiation and subsequent reduction of estrogenic activity as a function of absorbed dose were conducted using the yeast two-hybrid assay. Relative potency of E1 and EE2 compared to estrogenic activity of $17{\beta}$-estradiol (E2) was found to be 0.0144 and 0.1605, respectively. More than 90% of E1 and EE2 (both $5.0{\times}10^{-6}M$) was removed at an absorbed dose of 5 kGy, but more than 40% of estrogenic activity still remained. The addition of $TiO_2$ catalyst appeared to improve the removal efficiency of E1 and decrease estrogenic activity while there was no significant effect for EE2. Additionally, the calculated estrogenic activity of E1 and EE2 based on a regression model was well correlated with the observed activity.

Altered Pharmacokinetics and Hepatic Uptake of TBuMA in Ethynylestradio-Induced Cholestasis

  • Hong Soon-Sun;Choi Jong-Moon;Jin Hyo-Eon;Shim Chang-Koo
    • Archives of Pharmacal Research
    • /
    • v.29 no.4
    • /
    • pp.323-327
    • /
    • 2006
  • The objective of this study was to examine the pharmacokinetics of organic cations in intrahepatic cholestatic rats. A pretreatment with $17{\alpha}$-ethynylestradiol was used to induce intrahepatic cholestasis, and tributylmethylammonium (TBuMA) was used as a representative model organic cation. When $[^3H]$TBuMA was intravenously administered, the AUC value for TBuMA was significantly increased by $79\%$ in cholestasis, and its total systemic clearance was consequently decreased by $46\%$. In addition, the in vivo hepatic uptake clearance of TBuMA from the plasma to the liver was decreased by $50\%$ in cholestasis. The concentration of bile salts in plasma was increased by 2.1 fold in cholestatic rats. Since TBuMA forms ion-pair complexes with anionic components such as bile salts, the decreased hepatic uptake of TBuMA in cholestasis may be due to a change in endogenous components, e.g., bile salts in the plasma. In isolated normal hepatocytes, the uptake clearance for TBuMA in the presence of cholestatic plasma was decreased by $20\%$ compared with normal plasma. Therefore, we conclude that the inhibition of the hepatic uptake process by the cholestasis may be in part due to the increased formation of ion-pair complexes of TBuMA with bile salts in the plasma.

Estimation of Estrogenic Activity by E-screen Assay and Stepwise Analysis of Endocrine Disruptors in Pilot Sewage Treatment Plant (파일럿 규모의 하수 처리 공정별 E-screen Assay에 의한 에스트로겐 활성과 내분비계 장애물질의 농도 평가)

  • Lee, Ji-Ho;Park, Jong-Yol;Ra, Jin-Sung;Duong, Cuong N.;Lee, Byoung-Cheun;Kim, Sang-Don
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.7
    • /
    • pp.697-703
    • /
    • 2006
  • Endocrine disruptors were measured with GC/MS in effluents discharged from sewage treatment processes in pilot scale for the purpose of water reuse. From that analysis, we compared the removal rate of them by treatment processes. Nonylphenol was mainly detected in effluents and high concentration from 0.36 to 0.94 ${\mu}g/L$. $17{\beta}$-estradiol(E2) and $17{\alpha}$-ethynylestradiol(EE2) were detected as below the limit of detection in effluent. Endocrine disruptors were removed effectively in the range from 50 to 100% by treatment process. EC50 value($9.0{\times}10^{-3}$ M) of $17{\beta}$-estradiol(E2) by dose response curve of E-screen assay has higher than that of bisphenol A($2.736{\times}10^{-5}M$) and p-octylphenol($9.760{\times}10^{-6}$ M). These results showed that alkylphenols have lower relative estrogen potency than other estrogens such as $17{\beta}$-estradiol(E2). Calculated estrogenic activity(ng-EEQ/L) was 2 times higher than measured total estrogenic activity which estimated by E-screen assay. Moreover estrogenic activity of effluent by treatment process showed very low as below 1 ng-EEQ/L.