• Title/Summary/Keyword: $-70^{\circ}C$

Search Result 5,044, Processing Time 0.037 seconds

Influence of the Substrate Temperature on the Characterization of ZnO Thin Films (기판온도가 ZnO 박막의 특성에 미치는 영향)

  • Joung, Yang-Hee;Kwon, Oh-Kyung;Kang, Seong-Jun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.12
    • /
    • pp.2251-2257
    • /
    • 2006
  • We fabricated ZnO thin film successfully by using RF magnetron sputtering and investigated its potential for being utilized as the key material of piezoelectric device with the characterization of ZnO thin film such as such as crystallinity, surface morphology, c-axis orientation, film density. In thin study, $Ar/O_2$ gas ratio is fixed 70/30, RF power 125W, working pressure 8mTorr, distance between substrate and target 70mm, but the substrate temperature is varied from room temperature to $400^{\circ}C$. The relative intensity ($I_{(002)}/I_{(100)}$) or (002) peak in ZnO thin film deposited at $300^{\circ}$ was exhibited as 94%, then its FWHM was $0.571^{\circ}C$. Also, from the surface morphology evaluated by SEM and AFM, the film deposited at $300^{\circ}C$ showed uniform particle shape and excellent surface roughness of 4.08 m. The tendency of ZnO thin film density was exhibited to be denser with increasing substrate temperature but slightly decreased at near $400^{\circ}C$.

A Comparative Study on the Characteristics of Binary Oxidized Carbon Nanofluids Based DI Water and Ethanol (물-에탄올 기반 이성분 산화탄소나노유체의 특성 비교 연구)

  • Park, Sung-Seek;Kim, Nam-Jin
    • Journal of the Korean Solar Energy Society
    • /
    • v.32 no.6
    • /
    • pp.85-92
    • /
    • 2012
  • A nanofluid is a fluid containing suspended solid particles, with sizes on the order of nanometers. Normally, nanofluids have higher thermal conductivitiest han their base fluids. Therefore, we measured the thermal conductivity and viscosity of oxidized carbon nanofluids based the mixture of distilled water and ethanol (ethanol concentration is 0.2) oxidized carbon nanofluids were made by ultrasonic dispersing oxidized multi-walled carbon nanotubes in the mixture of distilled water and ethanol at the rates of 0.001~ 0.1 vol%. The thermal conductivity and viscosity of oxidized carbon nanofluids were measured by using transient hot-wire method and rotational digital viscometer, respectively. And all of experiments were carried out at the same temperature conditions($10^{\circ}C$, $25^{\circ}C$ and $70^{\circ}C$). As a result, when volume fraction of nanofluids is 0.1 vol%, thermal conductivity was improved 13.6% ($10^{\circ}C$), 15.1% ($25^{\circ}C$), and 17.0% ($70^{\circ}C$), and its viscosity was increased by 36.0% ($10^{\circ}C$), 32.9% ($25^{\circ}C$) and 19.5% ($70^{\circ}C$) than the base fluids.

A Study on the Heat-Curing of Acrylic Resin using Ring Furnace (Ring Furnace를 이용한 Acrylic Resin의 온성에 관한 연구)

  • Choi, Seog-Soon
    • Journal of Technologic Dentistry
    • /
    • v.13 no.1
    • /
    • pp.27-31
    • /
    • 1991
  • The purpose of this study was to evaluate the effect of curing time and curing temperature on the hear - Curing of acrylic resin using ring furnace. Specimens were fabricated from 2 kinds(Laboron, Bertex) heat-cured resin. Total 200 samples were divided into 4 groups(70$^{\circ}C$, 100$^{\circ}C$, 13$^{\circ}C$, 150$^{\circ}C$) and each group was divided into 5 small groups(30 min., 45min., 60min., 75min., 90min.). A microscope(Olympus Coll Co. Japan) was used to examine a randomly selected central zone, midzone and surface for each complete specimen. The results of the experiment were as follows : 1. To obtain non-polymerzation, cure the resin for 30 minutes at 70$^{\circ}C$ and 100$^{\circ}C$ in a ring furnace. 2. To obtain with porosity, cure the resin for 45 minutes, 60 minutes and 75 mintes at 70$^{\circ}C$ and for 90 minutes at 150$^{\circ}C$ in ring furnace. Porosity appears in Laboron for 30 minutes, 45 minutes at 150$^{\circ}C$ in a ring furnace. 3. Every other specimens connot get a sight of special problem with makes eye in the made surface.

  • PDF

Purification and Characterization of Cellulolytic Enzymes from Aspergillus niger (Aspergillus niger가 생산(生産)하는 섬유소(纖維素) 분해효소(分解酵素)의 정제(精製) 및 특성(特性))

  • Park, Kwan-Hwa;Oh, Tae-Kwang;Shin, Jae-Doo
    • Applied Biological Chemistry
    • /
    • v.24 no.3
    • /
    • pp.186-193
    • /
    • 1981
  • Three fractions of carboxymethyl-cellulase (F-I, F-II, and F-III) and ${\beta}-glucosidase$ form Aspergillus niger were partially purified by ammonium sulfate fractionation. Sephadex G-150 and DEAE-Sephadex column chromatography. The optimum conditions such as pH and temperature and thermal inactivation properties of the enzymes were investigated. Arrhenius plots of F-II and F-III appeared as straight lines, whereas that of F-I was biphasic. The Z-values of F-II and F-III were $8^{\circ}C$ and $10^{\circ}C$ respectively, while that of F-I was $4^{\circ}C$ over $60{\sim}70^{\circ}C$ and $383^{\circ}C$ over $70{\sim}98^{\circ}C$. Three fractions and the crude extract of carboxymethyl-cellulase exhibited a similar optimum pH 4.3 and temperature of $60^{\circ}C$, while Z-value of crude extract $(21.5^{\circ}C)$ was much higher than that of the purified enzyme. Maximum activity of both purified and crude extract of ${\beta}-glucosidase$ was shown at pH 4.7 and $60^{\circ}C$, and z-value of the enzyme was $7^{\circ}C$.

  • PDF

Property and Microstructure Evolution of Nickel Silicides on Nano-thick Polycrystalline Silicon Substrates (나노급 다결정 실리콘 기판 위에 형성된 니켈실리사이드의 물성과 미세구조)

  • Kim, Jong-Ryul;Choi, Young-Youn;Song, Oh-Sung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.1
    • /
    • pp.16-22
    • /
    • 2008
  • We fabricated thermally-evaporated 10 nm-Ni/30 nm and 70 nm Poly-Si/200 nm-$SiO_2/Si$ structures to investigate the thermal stability of nickel silicides formed by rapid thermal annealing(RTA) of the temperature of $300{\sim}1100^{\circ}C$ for 40 seconds. We employed for a four-point tester, field emission scanning electron microscope(FE-SEM), transmission electron microscope(TEM), high resolution X-ray diffraction(HRIXRD), and scanning probe microscope(SPM) in order to examine the sheet resistance, in-plane microstructure, cross-sectional microstructure evolution, phase transformation, and surface roughness, respectively. The silicide on 30 nm polysilicon substrate was stable at temperature up to $900^{\circ}C$, while the one on 70 nm substrate showed the conventional $NiSi_2$ transformation temperature of $700^{\circ}C$. The HRXRD result also supported the existence of NiSi-phase up to $900^{\circ}C$ for the Ni silicide on the 30 nm polysilicon substrate. FE-SEM and TEM confirmed that 40 nm thick uniform silicide layer and island-like agglomerated silicide phase of $1{\mu}m$ pitch without residual polysilicon were formed on 30 nm polysilicon substrate at $700^{\circ}C\;and\;1000^{\circ}C$, respectively. All silicides were nonuniform and formed on top of the residual polysilicon for 70 nm polysilicon substrates. Through SPM analysis, we confirmed the surface roughness was below 17 nm, which implied the advantage on FUSI gate of CMOS process. Our results imply that we may tune the thermal stability of nickel monosilicide by reducing the height of polysilicon gate.

A Comparison Study on Acorn and Chestnut Starch Gels (도토리와 밤전분 gel의 물리적 특성 비교)

  • 이혜성;이혜수
    • Korean journal of food and cookery science
    • /
    • v.7 no.1
    • /
    • pp.11-14
    • /
    • 1991
  • The physical properties of acorn and chestnut gels by various heating temperature were investigated. In microsturcture analysis by SEM, acorn starch gels of 9$0^{\circ}C$$90^{\circ}C$ showed regular three dimensional network structure and chestnut starch gels had finer porous network from $70^{\circ}C$. X-ray diffraction patterns of two starch gels showed very weak peak at 8~$10^{\circ}C$ and 16~$19^{\circ}C$. Hardness had the highest value at $90^{\circ}C$ and $98^{\circ}C$ for acorn gels, and $80^{\circ}C$ for chestnut gels. But cohesiveness increased with heating temperature in both of two starch gels.

  • PDF

Antimicrobial Effect of Grapefruit Seed Extract on Preservation for Carrot and Spinach (당근과 시금치 저장에 있어서 자몽종자추출물의 항균효과)

  • Kim Mi-Kyung;Park Mi-Suk;Choi Sun-Uk;Park Hae-Ryong;Hwang Yong-Il
    • Journal of Life Science
    • /
    • v.15 no.1 s.68
    • /
    • pp.66-70
    • /
    • 2005
  • In order to preserve the freshness of vegetables and to reduce the rate of decay, grapefruit seed extract (GFSE), a natural microorganism growth inhibiting agent, was applied during the preservation process of heat treated carrot and spinach. To investigate synergic effect of heat and GFSE treatment, carrots and spinaches were treated with or without 10 ppm of GFSE at $70^{\circ}C$. Surface color, texture and microbial counts of the samples were measured during storage at $4^{\circ}C$. GFSE showed an effective inhibitory activity against aerobic bacteria and yeast which might be involved in the decay of vegetables. Heat treatment at 2 min at $70^{\circ}C$ could also well preserve the color and texture of the vegetables. From the results, optimal concentrations of GFSE were 10 ppm and 50 ppm with heat treatment of 2 min $70^{\circ}C$ for the growth inhibitory effect to aerobic bacteria and yeast and preservation of color and texture.

Studies on the Thermal Stability of Pork Loin Muscle in Previous Heating Temperatures and Holding Times by DSC (DSG를 이용한 예비 가열 온도 및 유지 시간에 따른 돈육 등심 근육의 열안정성에 관한 연구)

  • 김천제;송민석;이창현;이의수;조진국;이찬호;마기준
    • Food Science of Animal Resources
    • /
    • v.18 no.4
    • /
    • pp.358-363
    • /
    • 1998
  • The objectives of this study were to evaluate the effect of previous heating temperature and holding times on the thermal behavior of pork loin muscle by DSC. Pork loin muscles were heated to achieve the following end-point temperatures: 40$^{\circ}C$, 50$^{\circ}C$, 60$^{\circ}C$, 70$^{\circ}C$, 80$^{\circ}C$ at heating rate = 10$^{\circ}C$/min. The first peak was disappeared when samples were initially heated to 50$^{\circ}C$ for 1 minute. As end-point temperature was raised, major peaks were progressively disappeared and peaks were lost completely at 80$^{\circ}C$. Especially, peaks were completely disappeared at 70$^{\circ}C$ for 10 minute. Increasing of exposure time to elevated temperature also increased denaturation, thereby reducing the area of the thermogram.

  • PDF

Responses of HSP Gene Expressions to Elevated Water Temperature in the Nile tilapia Oreochromis niloticus

  • Kwon, Joon-Yeong;Kim, Ju-Yeong
    • Development and Reproduction
    • /
    • v.14 no.3
    • /
    • pp.179-184
    • /
    • 2010
  • Water temperature influences on various key biological events in fish, but the internal pathway of the temperature effects are not well understood. Heat shock proteins (HSPs), known to respond in the level of cells to many environmental factors including temperature, could improve our understanding on the pathway. Some biological processes such as gonadal development and sex differentiation in the Nile tilapia Oreochromis niloticus is particularly sensitive to water temperature. In this study, we have investigated the expressions of HSP70 and HSP90 genes in young tilapia at an ordinary temperature ($28^{\circ}C$) and elevated water temperature ($36^{\circ}C$). The distribution of the expressions of HSP70 and HSP90 mRNA in this species were found to be almost ubiquitous, being detected in all tissues studied here (brain, gonad, liver and muscle), suggesting the house keeping functions of these genes. Heat shock by elevating temperature from $28^{\circ}C$ to $36^{\circ}C$ significantly increased the expression of HSP70 mRNA in the gonad, liver and muscle for several hours (P<0.05) (brain tissue was not examined for this). The increased level of HSP70 gene expression recovered to the level at control temperature ($28^{\circ}C$) when fish were kept continuously at high temperature ($36^{\circ}C$) for 24 hours. Contrary to this, expression of HSP90 mRNA did not show significant increase in the gonad and muscle by the same heat shock (P>0.05), except in the liver where the expression of HSP90 mRNA increased continuously for 24 hours at $36^{\circ}C$. The results obtained in this study suggest that response to temperature change in different tissue or organ may utilize different heat shock proteins, and that HSP70 may have some importance in temperature-sensitive gonadal event in the Nile tilapia.

Spraying and Combustion Characteristics of Heavy Oil in the Gun Type Burner for Hot Air Heater (온풍난방기용 건타입 중유버너의 분사특성과 연소특성)

  • 김영중;유영선;장진택;윤진하;연태용
    • Journal of Biosystems Engineering
    • /
    • v.24 no.2
    • /
    • pp.107-114
    • /
    • 1999
  • To find the best combustion conditions in the heavy oil burner kinetic viscosity of heavy oil A, B and C at different temperature range, from 40 to 140$^{\circ}C$, and the droplet sizes of the heavy oils at different temperature and pump pressure were measured. And, combustion characteristics were investigated under the different conditions : two different heavy oil and three different oil temperature. At temperature of 70, 100, 130$^{\circ}C$ the kinetic viscosity of heavy oil A and B are 7.9, 5.7, 4.3 and 30.4, 13.7, 7.9cSt, respectively. The greatest and smallest viscosity were 7,455 cSt at C oil on 27$^{\circ}C$ and 4.26cSt at A oil on 140$^{\circ}C$. The magnitude of viscosity difference between at 100$^{\circ}C$ and 140$^{\circ}C$ under 6 cSt in cases of A and B oil, but more than 30cST on C oil. Of the droplet sizes, the biggest and smallest droplet size in A oil were 98$\mu\textrm{m}$ at oil temperature of 130$^{\circ}C$(4.3cSt), pump pressure of 1.57MPa and 72$\mu\textrm{m}$ at 70$^{\circ}C$(7.9cSt), 2.35MPa, respectively. It appeared that as spraying pressure increased the droplet size decreased, however, no distinct differences were found in the effects of kinetic viscosity on the droplet sizes of the test range. The best combustion performance was observed when droplet size, spraying pressure and oil temperature were 73$\mu\textrm{m}$, 2.35MPa and 70$^{\circ}C$ producing CO2 of 13.1%, CO of 13ppm and flue gas temperature of 250$^{\circ}C$ in A oil combustion For B oil, it was100$^{\circ}C$, 2.35MPa, 52$\mu\textrm{m}$, producing CO2 of 10ppm and flue gas temperature of 260$^{\circ}C$. In general, it appeared that better combustion results were observed in the smaller droplets produced burner condition.

  • PDF