• Title/Summary/Keyword: ${ZrOCl_2}·{8H_2}O$

Search Result 41, Processing Time 0.026 seconds

Synthesis of $(ZrSiO_4)$ Powders by the Sol-Gel Process -Effect of the Milling- (졸-겔법에 의한 지르콘$(ZrSiO_4)$ 분말 합성 -재분쇄(Milling)에 대한 효과-)

  • 신용철;신대용;한상목;남인탁
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.7
    • /
    • pp.853-857
    • /
    • 1995
  • ZrSiO4 powders were prepared from partially hydrolyzed solution of Si(OC2H5)4 and ZrOCl2.8H2O solution by the sol-gel method and formation rate of ZrSiO4 on the reaction parameter was investigated. In order to prepare homogeneous ZrSiO4 precursor gels, the H2O/Si(OC2H5)4 molar ratio of about 2, the pH of the ZrOCl2.8H2O solution fo about 4 and stirring time of the mixed solutions of about 2 hrs were appropriate. Formation of temperature of ZrSiO4 reduced about 15$0^{\circ}C$ by milling and formation of ZrSiO4 at 1300~135$0^{\circ}C$ showed an accelerative increase through the hedvall effect by silica.

  • PDF

Hydrothermal Precipitation of PZT Powder (PZT분말의 수열합성에 관한 연구)

  • 이경희;이병하;대문정기;천하희흥지;강원호;박한수
    • Journal of the Korean Ceramic Society
    • /
    • v.24 no.4
    • /
    • pp.397-403
    • /
    • 1987
  • Pb(Zr0.52Ti0.48)O3 powders were prepared by hydrothermal synthesis. Using soluble salts such as Pb(NO3)2, TiCl4 and ZrOCl2$.$8H2O and oxide such as PbO and TiO2 as starting materials, PZT powder was hydrothermally synthesized at the temperature range between 150$^{\circ}C$ and 200$^{\circ}C$. The result showed that reactivity by alkali was decreased in the sequence of Pb(NO3)2, TiCl4, ZrOCl2, PbO, TiO2 and ZrO2. Using the first three soluble salts, PZT powder was synthesiged at 150$^{\circ}C$ for 1hr. In PbO-TiCl4-ZrOCl2 system, PZT powder was synthesized at 150$^{\circ}C$ for 8rs. In Pb(NO3)2-TiO2-ZrOCl2 system, PZT powder was synthesized at 150$^{\circ}C$ for 16hrs, in PbO-TiO2-ZrOCl2 system, the powder was synthesized at 200$^{\circ}C$ for 8hrs.

  • PDF

Synthesis of Mullite-Zirconia Composites from Kaolin by Gel Coating (Gel Coating법에 의한 Kaolin으로부터 Mullite-Zirconia 복합체의 합성)

  • 김세훈;김인섭;이병하
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.5
    • /
    • pp.497-504
    • /
    • 2000
  • In this study, mullite-zirconia comosite was fabricated by adding ZrOCl2.8H2O using of boehmite gel coating to Hadong kaolin (pink A grade) in order to enhance strength of the mullite specimens. The influence of ZrOCl2.8H2O content and fireing temperature on the crystall phase, microstructure, bulk density, strength of the specimens was investigated. Mullite-zirconia composite was produced in the process of coating zirconia to mullite powder synthesized thereafter and mixing simultaneously of starting materials with boehmite-zirconia gel. Maximum strength with in this study was 251 sintered at 1$600^{\circ}C$ for 2h. Bulk density and strength of the composite with zirconia coated mullite was higher than simultaneous on mixture of starting materials.

  • PDF

ZrOCl2.8H2O as an Efficient Catalyst for the Three-Component Synthesis of Triazoloindazoles and Indazolophthalazines

  • Tavakoli, Hamid Reza;Moosavi, Sayed Mojtaba;Bazgir, Ayoob
    • Journal of the Korean Chemical Society
    • /
    • v.57 no.4
    • /
    • pp.472-475
    • /
    • 2013
  • An efficient and environmentally benign protocol for the three-component synthesis of triazoloindazoles and indazolophthalazines via condensation of dimedone, aldehydes and urazole or phthalhydrazide catalyzed by $ZrOCl_2.8H_2O$ as an inexpensive and eco-friendly catalyst with high catalytic activity under solvent-free conditions is reported. This protocol provides a new and improved method for obtaining triazoloindazoles and indazolophthalazines in terms of good yields, simple experimental procedure and short reaction time.

Properties of the System $ZrO_2$+3m/o $Y_2O_3$ Powder Prepared by Co-precipitation Method(I) : Stability of Tetragonal ZrO2 Powder (공침법으로 제조한 $ZrO_2$+3m/o $Y_2O_3$계 분체의 특성(I) : 정방정 Zirconia분체의 안정성)

  • 홍기곤;이홍림
    • Journal of the Korean Ceramic Society
    • /
    • v.27 no.3
    • /
    • pp.361-368
    • /
    • 1990
  • The properties of the powder of ZrO2+3m/o Y2O3 system prepared by co-precipitation method at the pH values of 7, 9, 10 and 11 were investigated. ZrOCl2.8H2O and YCl3.6H2O were used as starting materials and NH4OH as a precipitation agent. Zirconium hydroxide near by Zr(OH)4 structure showed more excellent crystallinity and lower formation temperature of tetragonal ZrO2. In the range of this study, cubic ZrO2 was not formed and stability of tetragonal ZrO2 prepared in the conditiion of pH 7 was most excellent. Average particle sizes and specific surface areas of tetragonal ZrO2 powders, prepared as calcining amorphous zirconium hydroxides at $600^{\circ}C$ for 1h, were 0.6-0.8${\mu}{\textrm}{m}$ and 45-70$m^2$/g, respectively.

  • PDF

Mechanical Properties of $Al_2O_3-ZrO_2$ Ceramics Prepared by Co-precipitation Method (공침법으로 제조한 $Al_2O_3-ZrO_2$ 계의 세라믹스의 기계적 성질)

  • 이홍림;홍기곤;정형진
    • Journal of the Korean Ceramic Society
    • /
    • v.23 no.3
    • /
    • pp.44-52
    • /
    • 1986
  • $Al_2O_3-ZrO_2$ ceramics was obtained by the co-precipitation method using $Al_2(SO_4)_2$.$18H_2O$ and $ZrOCl_2$.$8H_2O$ as starting materials $MgCl_2$.$6H_2O$ as a sintering aid and NH4OH as a hydrolyzing agent. The coprecipitate from the above raw materials was calcined at 125$0^{\circ}C$ for 1h and again sintered at 1$650^{\circ}C$ for 2h before measurements of strength hardness and fracture toughness. MgO addition was found to increase mechanical properties of the $Al_2O_3-ZrO_2$ system. The strength and frac-ture toughness of $Al_2O_3-ZrO_2$ ceramics were considered to be increased by stress-induced phase tranforma-tion of $ZrO_2$.

  • PDF

The Study on the Preparation of PSZ from the Domestic Zircon Sand its Applications I. Preparation of the High Purity Zirconia Powder form Domestic Zircon Sand (국산 지르콘사로부터 부분 안정화 지르코니아의 제조 및 그 응용에 관한 연구 I. 국산 지르콘사로부터 고순도 지르코니아 분말의 제조)

  • Kim. H.;Sunwoo, S.;Shin, K.C.;Hwang, K.H.
    • Journal of the Korean Ceramic Society
    • /
    • v.24 no.2
    • /
    • pp.186-192
    • /
    • 1987
  • ZrO2 powders having high purity were prepared from domestic zircon sand using the caustic fusion method and the soda ash sintering process. In the caustic fusion method, ZrO2 recovery was reached to 96% when 100/140 mesh zircon was reacted with NaOH at the NaOH/Zircon mole ratio 6 and at 650$^{\circ}C$ for 2 hours. And in the soda ash sintering process, ZrO2 was recovered to 88.5% when -325 mesh zircon was reacted with Na2CO3 at the Na2CO3/Zircon mole ratio 1.1 and 1050$^{\circ}C$ for 2 hours. In both cases, Zr component was extracted to ZrOCl2, subsequently crystallized to ZrOCl2$.$8H2O to increase the purity, and converted to ZrO2 by precipitation. And to increase the sinter ability of powder, Cl- ion was removed and strong agglomeration was avoided by methanol distribution of Zr(OH)4 precipitates.

  • PDF

Preparation and Characteristics of $Y_2O_3-CeO_2-ZrO_2$ Structural Ceramics : II. Mechanical Properties and Thermal Stability of Sintered Body ($Y_2O_3-CeO_2-ZrO_2$ 구조세라믹스의 제조 및 특성 : II. 소결체의 기계적 성질 및 열적 안정성)

  • 오혁상;이윤복;김영우;오기동;박홍채
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.1
    • /
    • pp.102-108
    • /
    • 1997
  • ZrO2 powders stabilized with Y2O3 and CeO2 of various compositions were prepared by the coprecipitation of water-soluble ZrOCl2.8H2O, YCl3.6H2O and Ce(NO3)3.6H2O, and their compacts were pressurelessly sintered at 1400 and 150$0^{\circ}C$ for 2hrs in air. 2mol% Y2O3-ZrO3 showed the most superior strength (1003MPa) and microhardness (12.6GPa), while 10 mol%CeO2-ZrO2 had the hightest toughness (13.3 MPa.m1/2) after sintering at 140$0^{\circ}C$. The addition of Y2O3 into Y2O3-ZrO3 decreased mean grain size and increased strength and hardness but decrease toughness. On the other hand, the addition of CeO2 into Y2O3-ZrO2 enhanced the stability of tetragonal phase during low-temperature aging for a long time under hydrothermal atmosphere.

  • PDF

Properties of Al2O3-15v/o ZrO2(+3m/o Y2O3) Powder Prepared by Co-Precipitation Method (공침법으로 제조한 Al2O3-15v/o ZrO2(+3m/o Y2O3)계 분말의 특성)

  • 홍기곤;이홍림
    • Journal of the Korean Ceramic Society
    • /
    • v.26 no.2
    • /
    • pp.210-220
    • /
    • 1989
  • The properties of the powder of Al2O3-15v/o ZrO2(+3m/o Y2O3) system prepared by co-precipitation method at the pH values of 7, 9, 10 and 11 were investigated. Al2(SO4)3.18H2O, ZrOCl2.8H2O and YCl3.6H2O were used as starting materials and NH4OH as a precipitation agent. Zirconium hydroxide decreased the specific surface area of aluminum hydroxide of AlOOH type, while increased the specific surface area of aluminum hydroxide of Al(OH)3 type, and formed co-network structure of Al-O-Zr type with the aluminum hydroxides. The rate of transition to $\alpha$-Al2O3 from co-precipitated materials occurred in the order of 7≒10, 9 and 11 of pH values. Al2O3 and ZrO2 interacted to bring about coupled grain growth, and the growth of ZrO2 crystallite size rapidly occurred within $\theta$-Al2O3 matrix. Segregation did not occur in the system Al2O3-15v/o ZrO2(+3m/o Y2O3) and Y2O3 acted as a stabilizer to ZrO2. The lattice strain of tetragonal ZrO2 was increased by the constraint effect of Al2O3 matrix.

  • PDF

Powder Properties of ZrO2-MgO System Prepared by Co-precipitation Method (공침법으로 제조한 ZrO2-MgO계 분말특성)

  • 이형복;정윤중;김영규;이홍림
    • Journal of the Korean Ceramic Society
    • /
    • v.26 no.1
    • /
    • pp.109-115
    • /
    • 1989
  • The properties of the powders of ZrO2-MgO system prepared by co-precipitation method using ZrOCl2.8H2O and MgCl2.6H2O as starting materials were investigated after calcination from $600^{\circ}C$ to 120$0^{\circ}C$. The crystallization temperature of amorphous ZrO2 was increased as MgO contents increased. The crystallite size of ZrO2 was increased with increasing calcination temperature. The crystallite size of tetragonal ZrO2 calcined at 100$0^{\circ}C$ for 1hr wa about 45nm, and MgO contributed effectively to promoting stability of tetragonal Zirconia.

  • PDF