• Title/Summary/Keyword: ${Zn_2}{SiO_4}$:Mn

Search Result 136, Processing Time 0.034 seconds

Preparation and Luminescent Properties of (Zn1-xMgx)2SiO4:mn Phosphors ((Zn1-xMgx)2SiO4:mn 형광체의 제조와 발광특성)

  • Lee, Ji-Young;Yu, Il
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.5
    • /
    • pp.415-418
    • /
    • 2009
  • $Zn_{2}SiO_{4}$:Mn green phosphors doped with Mg for PDP were synthesized by solid state reaction method. $Zn_{2}SiO_{4}$:Mn, Mg phosphors with increasing Mg concentration were changed from Rhombohedral to Orthorhombic structure. Photoluminescence intensity of $Zn_{2}SiO_{4}$:Mn phosphors doped with Mg 0.5 mol was definitely higher than that of Mg non-doped sample. The enhanced luminescence with doping Mg in the $Zn_{2}SiO_{4}$:Mn phosphors was interpreted by the increase of energy transfer from host to Mn ions with substitution Mg for Zn in the $Zn_{2}SiO_{4}$:Mn host.

Luminescent Properties of (Zn1-xCax)2SiO4:Mn,Al Green Phosphors for Various Concentration ((Zn1-xCax)2SiO4:Mn 녹색 형광체의 농도 변화에 따른 발광특성)

  • Yu, Il
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.4
    • /
    • pp.323-326
    • /
    • 2010
  • $(Zn_{1-x}Ca_x)_2SiO_4$:Mn phosphors doped with Ca were synthesized by solid state reaction method. $(Zn_{1-x}Ca_x)_2SiO_4$:Mn phosphors showed XRD patterns of Willemite structure. Also, $CaSiO_3$ structure and new peak near 610 nm in $(Zn_{1-x}Ca_x)_2SiO_4$:Mn with increasing value of x were observed from XRD and PL. The new peak near 610 nm in $(Zn_{1-x}Ca_x)_2SiO_4$:Mn with doping Ca was attributed to formation of $CaSiO_3$.

Preparation and Luminescent Properties of Zn2SiO4:Mn, Ga Phosphors (Zn2SiO\4:Mn, Ga 형광체의 제조와 발광특성)

  • Lee, Ji-Young;Yu, Yun-Sik;Yu, Il
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.2
    • /
    • pp.158-162
    • /
    • 2009
  • $Zn_2SiO_4$:Mn green phosphors doped with Ga for PDP were synthesized by solid state reaction method. Photoluminescence measurements showed a new emission peak at around 600 nm for $Zn_2SiO_4$:Mn phosphors doped with Ga. Also, the luminescent color with doping $Ga^{3+}$ in the $Zn_2SiO_4$:Mn phosphors changed to green from yellowish green. Consequently, the new peak and charge of the luminescent color in the $Zn_2SiO_4$:Mn, Ga phosphors were attributed to $^2E{\rightarrow}^6A_2$ transition of $Mn^{4+}$.

Preparation and Luminescent Properties of Zn2SiO4:Mn,Al Green Phosphors (Zn2SiO4:Mn,Al 녹색 형광체의 제조와 발광특성)

  • Lee, Ji-Young;Yu, Il
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.4
    • /
    • pp.363-366
    • /
    • 2007
  • [ $Zn_2SiO_4:Mn$ ] green phosphors doped with $NH_4Cl$ and Al for PDP were synthesized by solid state reaction method. The luminescence of 532 nm in $Zn_2SiO_4:Mn$ phosphors was associated with $^4T_1{\to}^6A_1$ transition. Photoluminescence intensity of $Zn_2SiO_4:Mn$ doped with $NH_4Cl$ 15 mol% increased about two times as compared with that of $NH_4Cl$ non-doped sample. The color of the emission of Al-doped $Zn_2SiO_4:Mn$ phosphors changed to yellowish green.

Spherical-shaped Zn2SiO4:Mn Phosphor Particles with Gd3+/Li+ Codopant (Gd3+/Li+ 부활성제가 첨가된 구형의 Zn2SiO4:Mn 형광체 입자)

  • Roh, Hyun Sook;Lee, Chang Hee;Yoon, Ho Shin;Kang, Yun Chan;Park, Hee Dong;Park, Seung Bin
    • Korean Chemical Engineering Research
    • /
    • v.40 no.6
    • /
    • pp.752-756
    • /
    • 2002
  • Green-emitting $Zn_2SiO_4:Mn$ phosphors for PDP(Plasma Display Panel) application were synthesized by colloidal seed-assisted spray pyrolysis process. The codoping with $Gd^{3+}/Li^+$, which replaces $Si^{4+}$ site in the willemite structure, was performed to improve the luminous properties of the $Zn_2SiO_4:Mn$ phosphors. The particles prepared by spray pyrolysis process using fumed silica colloidal solution had a spherical shape, small particle size, narrow size distribution, and non-aggregation characteristics. The $Gd^{3+}/Li^+$ codoping amount affected the luminous characteristics of $Zn_2SiO_4:Mn$ phosphors. The codoping with proper amounts of $Gd^{3+}/Li^+$ improved both the photoluminescence efficiency and decay time of $Zn_2SiO_4:Mn$ phosphor particles. In spray pyrolysis, the post-treatment temperature is another factor controlling the luminous performance of $Zn_2SiO_4:Mn$ phosphors. The $Zn_{1.9}SiO_4:Mn_{0.1}$ phosphor particles containing 0.1 mol% $Gd^{3+}/Li^+$ co-dopant had a 5% higher PL intensity than the commercial product and 5.7 ms decay time after post-treatment at $1,145^{\circ}C$.

Preparation and Luminescent properties of $(Zn_{1-x}Mg_x)_2SiO_4$:Mn phosphors ($(Zn_{1-x}Mg_x)_2SiO_4$:Mn 형광체의 제조와 발광특성)

  • Lee, Ji-Young;Yu, Il
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.392-393
    • /
    • 2007
  • PDP용 녹색 $Zn_2SiO_4$:Mn 형광체의 발광특성과 결정성을 향상시키기 위해 co-dopant로 Mg를 첨가한 $(Zn_{1-x}Mg_x)_2SiO_4$:Mn 형광체를 합성하였다. 합성된 형광체의 발광특성을 PL로 조사한 결과, $Zn_2SiO_4$:Mn 형광체는 Mg의 농도에 관계없이 530nm에서 녹색 발광을 하였고, Mg의 농도가 0.5 mol%일 때 가장 높은 발광세기가 나타났다. 이것은 Zn과 이온반경이 비슷한 Mg가 치환되어 모체에서의 Mn으로의 에너지 전이가 증가하여 발광세기가 증가한 것으로 생각된다.

  • PDF

무기물 색변환층을 사용한 무기물/유기물 유기발광소자의 발광 메커니즘

  • Jeong, Hwan-Seok;Kim, Seok-Hyeon;Chu, Dong-Cheol;Kim, Tae-Hwan;Gwon, Myeong-Seok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.122-122
    • /
    • 2010
  • 백색 유기발광소자를 제작하기 위한 여러 가지 유기물층을 사용할 때 제작공정이 어려워지고 유기발광소자의 발광 효율이 저하되고 색안정성이 나빠지는 문제점이 있다. 본 논문에서는 Zn2SiO4:Mn 무기물 형광체를 사용한 유무기 혼성 유기발광소자를 제작하고 발광 메카니즘을 조사하였다. 색변환층으로 사용되는 Zn2SiO4:Mn 형광체는 졸겔 방법을 사용하여 형성하고 비이클용액 및 열처리 공정을 사용하여 유리기판 위에 도포하였다. 형성된 Zn2SiO4:Mn 형광체 층에 대하여 X선 회절측정한 결과는 형광체내의 Zn 이온이 도핑된 Mn 이온에 대체되었음을 보여준다. 제작된 진청색 OLED의 전계발광 스펙트럼은 461 nm 에서 peak 을 나타내고 Zn2SiO4:Mn 무기물 형광체는 470 nm에서 여기 되어 Mn 이온의 4T1-6A1 전이에 의하여 527 nm에서 발광을 한다. Zn2SiO4:Mn 무기물 형광체를 사용한 유기발광소자의 전계발광스펙트럼에서 나타나는 527nm peak 은 Zn2SiO4:Mn 무기물의 색변환에 의해 나타난 결과로서 제작된 유기발광소자에서 발광된 빛을 청색에서 녹색으로 변환한 결과이다. Zn2SiO4:Mn 무기물 색변환층을 사용하여 제작된 무기물/유기물 유기발광소자의 발광 메카니즘은 전계발광스펙트럼 및 광루미네센스 스펙트럼 결과를 기초로 설명하였다. 이 결과는 녹색 무기물 형광체를 진청색 유기발광소자와 결합하여 제작된 유기발광소자의 발광색을 조절할 수 있음을 보여주었다.

  • PDF

Preparation and Characterization of Zn2SiO4:Mn2+ Green Phosphor with Solid State Reaction (고상법에 의한 Zn2SiO4:Mn2+녹색 형광체의 제조와 특성에 관한 연구)

  • Yoo, Hyeon-Hee;Nersisyan, Hayk;Won, Hyung-Il;Won, Chang-Whan
    • Korean Journal of Materials Research
    • /
    • v.21 no.6
    • /
    • pp.352-356
    • /
    • 2011
  • [ $Zn_{2(1-x)}Mn_xSiO_4$ ]$0.07{\leq}x{\leq}0.15$) green phosphor was prepared by solid state reaction. The first heating was at $900^{\circ}C-1250^{\circ}C$ in air for 3 hours and the second heating was at $900^{\circ}C$ in $N_2/H_2$(95%/5%) for 2 hours. The size effect of $SiO_2$ in forming $Zn_2SiO_4$ was investigated. The temperature for obtaining single phase $Zn_2SiO_4$ was lowered from $1100^{\circ}C$ to $1000^{\circ}C$ by decreasing the $SiO_2$ particle size from micro size to submicro size. The effect of the activators for the Photoluminescence (PL) intensity of $Zn_2SiO_4:Mn^{2+}$ was also investigated. The PL intensity properties of the phosphors were investigated under vacuum ultraviolet excitation (147 nm). The emission spectrum peak was between 520 nm and 530 nm, which was involved in green emission area. $MnCl_2{\cdot}4H_2O$, the activator source, was more effective in providing high emission intensity than $MnCO_3$. The optimum conditions for the best optical properties of $Zn_2SiO_4:Mn^{2+}$ were at x = 0.11 and $1100^{\circ}C$. In these conditions, the phosphor particle shape was well dispersed spherical and its size was 200 nm.

Zn2SiO4:Mn Phsophor Particles Prepared by Flame Spray Pyrolysis (화염분무열분해 공정에 의해 합성되어진 Zn2SiO4:Mn 형광체)

  • Kang Y. C.;Sohn J. R.;Jung K. Y.
    • Korean Journal of Materials Research
    • /
    • v.14 no.8
    • /
    • pp.600-606
    • /
    • 2004
  • $Zn_{2}SiO_{4}:Mn$ phosphor particles were prepared by a flame spray pyrolysis method. It has been generally known that the high-temperature flame enables fast drying and decomposition of droplets. In the present investigation, the morphology and luminescent property of $Zn_{2}SiO_{4}:Mn$ phosphor were controlled in a severe flame preparation condition. The particle formation in the flame spray pyrolysis process was achieved by the droplet-to-particle conversion without any evaporation of precursors, which made it possible to obtain spherical $Zn_{2}SiO_{4}:Mn$ particles of a pure phase from a droplet. Using colloidal solutions wherein dispersed nano-sized silica particles were adopted as a silicon precursor. $Zn_{2}SiO_{4}:Mn$ particles with spherical shape and filled morphology were prepared and the spherical morphology was maintained even after the high-temperature heat treatment, which is necessary to increase the photoluminescence intensity. The $Zn_{2}SiO_{4}:Mn$ particles with spherical shape, which were prepared by the flame spray pyrolysis and posttreated at $1150^{\circ}C$, showed good luminescent characteristics under vacuum ultraviolet (VUV) excitation.

Synthesis of Mn-doped Zn2SiO4 phosphor particles by solid-state method at relatively low temperature and their photoluminescence characteristics (상대적으로 낮은 온도에서의 고상법에 의한 망간이 도핑된 Zn2SiO4 형광체 입자의 제조 및 형광특성)

  • Lee, Jin-Hwa;Choi, Seung-Ok;Lee, Dong-Kyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.1
    • /
    • pp.228-233
    • /
    • 2010
  • Mn-doped $Zn_2SiO_4$ phosphor particles having submicrometer sizes were synthesized by a solid-state reaction method using methyl hydrogen polysiloxane-treated ZnO, fumed $SiO_2$ and various Mn sources. The crystallization and photoluminescent properties of the phosphor particles were investigated by X-ray diffraction(XRD), scanning electron microscope(SEM), and by their photoluminescence(PL) spectra. Due to the effect of the dispersion and coherence of the methyl hydrogen polysiloxane-treated ZnO, the Mn-doped $Zn_2SiO_4$ particles were successfully obtained by a solid state method at $1000^{\circ}C$, and the maximum PL intensity of the prepared particles under vacuum ultra violet(VUV) excitation occurred at a Mn concentration of 0.02mol and a sintering temperature of $1000^{\circ}C$.