• Title/Summary/Keyword: ${NO_3}^-$-N

Search Result 8,950, Processing Time 0.041 seconds

Evaluation of indirect N2O Emission from Nitrogen Leaching in the Ground-water in Korea (우리나라 농경지에서 질소의 수계유출에 의한 아산화질소 간접배출량 평가)

  • Kim, Gun-Yeob;Jeong, Hyun-Cheol;Kim, Min-Kyeong;Roh, Kee-An;Lee, Deog-Bae;Kang, Kee-Kyung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.6
    • /
    • pp.1232-1238
    • /
    • 2011
  • This experiment was conducted to measure concentration of dissolved $N_2O$ in ground-water of 59 wells and to make emission factor for assessment of indirect $N_2O$ emission at agricultural sector in agricultural areas of Gyeongnam province from 2007 to 2010. Concentrations of dissolved $N_2O$ in ground-water of 59 wells were ranged trace to $196.6{\mu}g-N\;L^{-1}$. $N_2O$ concentrations were positively related with $NO_3$-N suggesting that denitrification was the principal reason of $N_2O$ production and $NO_3$-N concentration was the best predictor of indirect $N_2O$ emission. The ratio of dissolved $N_2O$-N to $NO_3$-N in ground-water was very important to make emission factor for assessment of indirect $N_2O$ emission at agricultural sector. The mean ratio of $N_2O$-N to $NO_3$-N was 0.0035. It was greatly lower than 0.015, the default value of currently using in the Intergovernmental Panel on Climate Change (IPCC) methodology for assessing indirect $N_2O$ emission in agro-ecosystems (IPCC, 1996). It means that the IPCC's present nitrogen indirect emission factor ($EF_{5-g}$, 0.015) and indirect $N_2O$ emission estimated with IPCC's emission factor are too high to use adopt in Korea. So we recommend 0.0034 as national specific emission factor ($EF_{5-g}$) for assessment of indirect $N_2O$ emission at agricultural sector. Using the estimated value of 0.0034 as the emission factor ($EF_{5-g}$) revised the indirect $N_2O$ emission from agricultural sector in Korea decreased from 1,801,576 ton ($CO_2$-eq) to 964,645 ton ($CO_2$-eq) in 2008. The results of this study suggest that the indirect Emission of nitrous oxide from upland recommend 0.0034 as national specific emission factor ($EF_{5-g}$) for assessment of indirect $N_2O$ emission at agricultural sector.

A Novel Linking Schiff-Base Type Ligand (L: py-CH=N-C6H4-N=CH-py) and Its Zinc Coordination Polymers:Preparation of L, 2-Pyridin-3-yl-1H-benzoimidazol, trans-[Zn(H2O)4L2].(NO3)2.(MeOH)2[Zn(NO3)(H2O)2(L)].(NO3).(H2O)2 and [Zn(L)(OBC)(H2O)] (OBC = 4,4'-Oxybis(benzoate))

  • Kim, Han-Na;Lee, Hee-K.;Lee, Soon-W.
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.6
    • /
    • pp.892-898
    • /
    • 2005
  • A long, bis(monodentate), linking Schiff-base ligand L (py-CH=N-$C_6H_4$-N=CH-py) was prepared from 1,4-phenylenediamine and 3-pyridinecarboxaldehyde by the Schiff-base condensation. Ligand L has two terminal pyridyl groups capable of coordinating to metals through their nitrogen atoms. In contrast, the same reaction between 1,2-phenylenediamine and 3-pyridinecarboxaldehyde produced a mixture of imidazol isomers (2-pyridin-3-yl-1H-benzoimidazole), which are connected to one another by the N-H…N hydrogen bonding to form a tetramer. From Zn($NO_3)_2{\cdot}6H_2O$ and ligand L under various conditions, one discrete molecule, trans- [Zn($H_2O)_4L_2]{\cdot}(NO_3)_2{\cdot}(MeOH)_2$, and two 1-D zinc polymers, [Zn$(NO_3)(H_2O)_2(L)]{\cdot}(NO_3){\cdot}(H_2O)_2$ and [Zn(L) (OBC)($H_2O$)], were prepared. In ligand L, the N$\ldots$N separation between the terminal pyridyl groups is 13.994 $\AA$, with their nitrogen atoms at the meta positions (3,3’) in a trans manner. The corresponding N$\ldots$N separations in its compounds range from 13.853 to 14.754 $\AA$.

Effect of Pre-NH3 Stripping on the Advanced Sewerage Treatment by BNR (BNR에 의한 하수의 고도처리에 미치는 NH3 스트리핑 전처리의 영향)

  • Seo, Jeong-Beom;An, Kwang-Ho
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.5
    • /
    • pp.846-850
    • /
    • 2006
  • The biological nutrient removal from domestic wastewater with low C/N ratio is difficult. Therefore, this study was performed to increase influent C/N ratio by ammonia stripping without required carbon source and for improving treatment efficiencies of sewerage by the combination process of ammonia stripping and BNR (StripBNR). The results of this study were summarized as follows. BOD removal efficiencies of BNR and StripBNR were 95.3% and 93.2%, respectively. T-N and T-P removal efficiencies of BNR were 53.3% and 40.8%, respectively. T-N and T-P removal efficiencies of StripBNR were 72.8% and 62.9%, respectively. Concentrations of $NH_3-N$, $NO_2-N$ and $NO_3-N$ at BNR effluent were 0.03 mg/L, 0.08 mg/L and 9.12 mg/L, respectively. On the other hands, concentrations of $NH_3-N$, $NO_2-N$ and $NO_3-N$ at StripBNR effluent were 5.79 mg/L, 0.01 mg/L and 0.14 mg/L, respectively. Consequently, influent C/N ratio of BNR process was increased by ammonia stripping. Removal efficiency of T-N and T-P was improved about 20% by the process of StripBNR.

A study on characteristic by isolation of nitrogen synthetic microorganism and ammonia nitrogen removal in artificial wastewater (질소 합성 균주의 분리에 의한 특성검토와 합성폐수중의 암모니아성질소 제거)

  • Kim, Su-Il;Lee, Ki-Hyung;Phae, Jae-Gun
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.10 no.3
    • /
    • pp.117-125
    • /
    • 2002
  • This study experimented a possibility of advanced treatment through microorganism that converts $NH_3-N$ to organic nitrogen in wastewater contaminated by ammoniac nitrogen unlike conventional nitrogen removal process. After distributing three kinds of special bacteria that use $NH_3-N$ as a substrate, when those bacteria were cultured in no salt condition and salt condition (3% NaCl), M11 showed better growth in salt condition and M12 showed better growth in no salt condition. However M7l grew well in both no salt condition and salt condition. In the test of glucose effect, maximum growth and removal rate were observed in glucose concentration of 5g/L but in high concentration (1000mg/L as $NH_3-N$) of $NH_3-N$ growth and removal rate were low. Removal rate was the highest in 100mg/L $NH_3-N$ and the fact that concentration of $NO_2-N$ and $NO_3-N$ didn't increase assumed $NH_3-N$ was converted to organic nitrogen. Optimum concentration of $K_2HPO_4$ for phosphorous supply and buffer was 5g/L. Special bacteria distributed could use $NO_2-N$ and $NO_3-N$ as well as $NH_3-N$ as substrates. This study showed that when growth rate of bacteria was high removal rate also was high. It is possible to apply as a method to treat wastewater polluted by $NH_3-N$.

  • PDF

A Study of Chemical Constituents in the major Streams in TaeGu City (대구시 주요 하천수의 이화학적 성분에 관한 조사연구)

  • Kang, Hoe-yang;Jung, Chan
    • Journal of Environmental Health Sciences
    • /
    • v.9 no.1
    • /
    • pp.31-47
    • /
    • 1983
  • This study was performed to investigate how much chemical constituents are contained and to what extent they are spread in the major streams running through Taegu City, i. e.: Yeechun, Beomeo, Chilsung, Dalseo, during the seven months Period between March to September, 1982. Nine constituents, pH, DO, COD, T-N, $NH_4-N, NO_2-N, NO_3-N, Cl^-, SO_4--$ and $PO_4-P---$, were found to be-contained in those streams. The results of the survey are summarized as follows. 1) Each chemical constituent detected in the five streams has the following variation range. pH(7.0-9.10), DO (ND-7.46ppm), COD (5.4-173ppm), T-N(13-42ppm), $NH^+_$-N$ (10.2-32.2ppm), $NO^-_2-N$ (0.007-2.53ppm), $NO^-_3-N$ (0.005-2.16ppm), $Cl^-$ (150-469 ppm), $SO_4^{3-}$ (71-1000ppm), $PO_4^{3-}-P$ (0.9-53ppm) The amount of all the constituents except pH, and $NO_3-N$, exceeded the standard value allowed for drinking, farming, and industrial water. 2) The monthly variation in the amount of each constituent differs according to the station from which it was sampled, but in general, the amount increased during the season from March to July when the rainfall was little while it decreased in August when the rainfall was abundant. 3) A statistical analysis of the constituents shows positive correlations that T-N and $NH^+_4-N$, water temperature and $NO^-_3-N$, but there were no ones beween the COD and $NH^+_4-N$ 4 ) The degree of COD pollution in each stream is in the following order. Kongdan, Yeechun, Beomeo, ChiLsung, and Dalseo. 5) Five major streams in Taegu City, Yeechun, Beomeo, Chilsung Dalseo, and Kongdan, are so narrow in width and so short in length that they flow into the Sincheon river or the Gumho river without undergoing self-purification. The increase in population and various kinds of industrial pollutants make the supply insufficient and water pollution inevitable. 4 ) The degree of COD pollution in each stream is in the following order. Kongdan, Yeechun, Beomeo, ChiLsung, and Dalseo.

  • PDF

Denitrification of Synthetic Wastewater in Submerged Biofilter (침지식 여과조를 이용한 합성 폐수의 탈질화)

  • 오승용;조재윤;김인배
    • Journal of Aquaculture
    • /
    • v.10 no.3
    • /
    • pp.335-346
    • /
    • 1997
  • Denitrification is one of the important processes of removing nitrate from in recirculating aquaculture systems. And this process is affected by many factors such as external organic carbon sources, hydraulic retention time (HRT), COD/NO3--N (C:N) ratio, etc. However, not many studies were done for the optimum conditions of denitrification in the recirculation system for aquaculture. Therefore, this study was conducted to find out the optimum removal condition of NO3--N using submerged denitrification biofilter. The combinations of two external organic carbon sources (glucose and methanol), two HRT (4 and 8-hour) and four differnent C : N ratios (3, 4, 5, 6) were tested. The removal efficiencies of NO3--N and total inorganic nitrogen (TIM) at 8-hour HRT were better than those at 4-hour's (P<0.05). The maximum removal efficiency of NO3--N by methanol (97.8%) was achieved at HRT and C : N ratio were 8-hour and 4.0 respectively. The efficiencies of methanol for the removal of NO3--N and TIN were always better than those of glucose (P<0.05). The maximum removal efficiencies of total inorgainc nitrogen (TIN) were gained at C : N ration of 5.0. The maximum removel efficiencies of TIN using methanol and glucose were 96.9% and 71.5% respectively. Anaerobic condition which is necessary for denitrification process was not made until the 8-hour HRT and higher C : N ratio (5.0). Removal of NO3--N at 4-hour HRT and C : N ration lower than 5.0 were inhibited by oxygen and/or low quantity of external organic carbon. Removal efficiencies of NO3--N were also inhibited by high C : N (6.0) ratio when HRT was 8-hour.

  • PDF

Determination of the Optimum NH$_3$-N/NO$_2$-N Ratio by Anaerobic Batch Test in Anaerobic Ammonium Oxidation Process (혐기성 암모늄 산화공정에서 혐기성 회분식 실험에 의한 NH$_3$-N/NO$_2$-N의 최적비 산정)

  • Lee, Hwan-Hee;Kim, I-Jung;Jung, Jin-Young;Kim, Jee-Hyung
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.7
    • /
    • pp.700-704
    • /
    • 2008
  • Nitrite and free ammonia have been known as substrate inhibitors in anaerobic ammonium oxidation. To reduce inhibitory effect of these substrates, the NH$_3$-N/NO$_2$-N ratio in the influent could be properly controlled in anaerobic ammonium oxidation process. Five kinds of NH$_3$-N/NO$_2$-N ratio were assayed in batch to find optimum NH$_3$-N/NO$_2$-N ratio, curtailing substrate inhibition. As the results of batch test, the highest T-N removal efficiency of 88% was obtained at 1.00 : 1.30 of NH$_3$-N/NO$_2$-N ratio. In addition, rate constants for ammonium and nitrite in zero-order kinetics were found to be the highest values as 7.66 mg/L$\cdot$hr and 11.89 mg/L$\cdot$hr at 1.00 : 1.30 ratio, respectively. However, as for the specific anammox activity, the ratio of NH$_3$-N/NO$_2$-N ratio was recommended as 1 : 1.15 which can maintain the highest SAA during continuous operation and preclude the accumulation of nitrite in the reactor.

Moved of Applied Fertilizers through Volcanic Ash Soils in a Lysimeter Experiment (Lysimeter를 이용한 시비비료의 화산회토 토양중 이동에 관한 연구)

  • 강봉균;조남기
    • Journal of Soil and Groundwater Environment
    • /
    • v.6 no.3
    • /
    • pp.3-12
    • /
    • 2001
  • This study conducted to Investigate the movement of fertilized nutrients in a volcanic ash soil in Jeju using by the pressure-vacuum soil water sampler. The percolated water to measure the ion concentration of leachates was taken from a lysimeter at depths of 20, 40, 60, 80, 100 and 120 cm in the soil in where a corn and potato were cultivated as a preceding and succeeding crop, respectively. Fertilizers of N-$P_2$O$_{5}$-$K_2$O were applied at the rate of 36-30-30 kg $10a^{-1}$ for the corn and 28-22-24 kg $10a^{-1}$ for the potato prior to planting of both crops. The highest concentrations of Cl , $NO_3$-N, $Ca^{+2}$ and $K^+$ in percolates were showed at 20cm and 40cm in soil depth at one month after fertilizing, and then gradually moved and reduced into below soil depths. At 5.5 months after fertilization, the concentrations in all soil depths were similar with the value of before fertilization. At depth of 120cm, the concentration of NO$_3$-N and the other cations in leachate was highest 1 to 1.5 months after fertilization. pH in percolated water was negatively correlated with NO$_3$-N concentration while the concentration of $NO_3$-N showed positive correlation between Cl, $Ca^{+2}$ and $Mg^{+2}$ concentrations. This result indicated that those cations can be leached out by accompanied with $NO_3$-N.

  • PDF

A Study on Design Condition of SCR System with 1000Nm$^3$/h Pilot Plant (1000Nm$^3$/h 파일럿 플랜트를 이용한 SCR설비의 설계조건에 관한 연구)

  • 장인갑;선칠영;김정일;문길호
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2003.11a
    • /
    • pp.469-470
    • /
    • 2003
  • 질소산화물(NOx)은 대기오염물질이며, 우리나라 대기환경기준 설정항목중 6대 집중관리항목으로 취급되고 있다. 일반적으로 질소산화물에는 NO, NO$_2$, NO$_3$, $N_2$O, $N_2$O$_3$, $N_2$O$_4$, $N_2$O$_{5}$등이 존재하는 것으로 알려져 있으나, 대기중에서 검출되는 것은 $N_2$O, NO, NO$_2$ 등이며, 이 중에서 관리대상은 NO와 NO$_2$이다. 최근 정부에서는 질소산화물의 배출을 억제하기 위해 2005년 이후부터 배출허용기준을 대폭 강화할 것을 입법 예고하고 있다. (중략)

  • PDF

Comparison of Nitrogen Removal Between Reed and Cattail Wetland Cells in a Treatment Pond System (갈대 및 부들 습지셀의 연못시스템 방류수 질소제거 비교)

  • Yang, Hong-Mo
    • Korean Journal of Environmental Agriculture
    • /
    • v.23 no.4
    • /
    • pp.234-239
    • /
    • 2004
  • [ $NO_3$ ]-N and T-N removal rates of cattail wetland cells were compared with those of reed wetland cells. The examined cells were a part of a pond-wetland system composed of two ponds in series and six wetland cells in parallel. Each wetland cell was 25m in length and 6m in width. Cattails (Typha angustifolia) were transplanted into three cells and reeds Phragmites australis) into another three ones in June 2000. Water of Sinyang stream flowing into Kohung Estuarine lake located in the southern part of the Korean Peninsula was pumped into the primary pond, its effluent was discharged into the secondary pond Effluent from the secondary pond was funneled into each cell. Two cattail and reed cells were chosen for this research. Water quantity and quality of influnt and effluent were analyzed front May 2001 through October 2001. The volume of influent and effluent of the cells averaged about $20.0\;m^3/day$ and $19.3\;m^3/day$, respectively. Hydraulic retention time was approximately 1.5 days. Influent $NO_3$-N concentration for the four cells averaged 2.39 mg/L. Effluent $NO_3$-N concentration far the cattail and reed cells averaged 1.74 and 1.78 mg/L, respectively. Average $NO_3$-N retention rate for the cattail and reed cells by mass was 30 and 29%, respectively. Influent T-N concentration far the four cells averaged 4.13 mg/L. Effluent T-N concentration for the cattail and reed cells averaged 2.55 and 2.61 mgL respectively. Average T-N retention rate for the cattail and reed cells by mass was 39 and 38%, respectively. $NO_3$-N and T-N concentrations in effluent from the cattail cells were significantly low (p=0.04), compared with those from the reed cells. Cattail wetland cells were more efficient for $NO_3$-N and T-N abatement than reed ones.