• Title/Summary/Keyword: ${\varepsilon}$ phase

Search Result 350, Processing Time 0.03 seconds

Metal Nanoparticles in the Template of Poly(2-ethyl-2-oxazoline)-block-Poly(${\varepsilon}$-caprolactone) Micelle

  • Park, Chi-Young;Rhue, Mi-Kyo;Lim, Jin-O;Kim, Chul-Hee
    • Macromolecular Research
    • /
    • v.15 no.1
    • /
    • pp.39-43
    • /
    • 2007
  • The amphiphilic block copolymer (PEtOz-PCL) of poly(2-ethyl-2-oxazoline) (PEtOz) and poly(${\varepsilon}$-caprolactone) (PCL) formed spherical micellar structures with an average diameter of 26 nm in aqueous phase. Au and Pd nanoparticles with an average diameter of $2{\sim}3nm$ were prepared by using the PEtOz-PCL micelle consisting of a PEtOz shell and PCL core. The Au nanoparticles of PEtOz-PCL micelles in aqueous phase could be transferred into organic phase by using n-dodecanethiol. The use of the Pd-NP/PEtOz-PCL micelle as a nanoreactor for Suzuki cross-coupling reaction was investigated.

Effect of $CO_2$ Content on the Growth and Corrosion Characteristics of the Compound Layers in Gaseous Nitrocarburized Carbon Steels (가스 질화침탄처리한 탄소강의 화합물층 성장 및 부식특성에 미치는 $CO_2$함량의 영향)

  • Kim, Y.H.;Kim, S.D.;Yoon, H.J.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.15 no.5
    • /
    • pp.219-227
    • /
    • 2002
  • This study has been performed to investigate the effect of $CO_2$ content on the growth characteristics of the compound layer, porous layer and corrosion characteristics of carbon steels after gaseous nitrocarburizing in $70%-NH_3-CO_2-N_2$ at $580^{\circ}C$ for 2.5 hrs. The results obtained from the experiment were the thickness of the compound and porous layers increased with increasing $CO_2$ contents. At the same fixed gas composition the thickness of the compound and porous layer increased with increasing carbon content of the specimens. X-ray diffraction analysis showed that compound layer was mainly consisted of ${\varepsilon}-Fe_{2-3}(N,C)$ and ${\gamma}^{\prime}-Fe_4N$ as the increased with $CO_2$ contents in atmosphere, compound layer was chiefly consisted of ${\varepsilon}-Fe_{2-3}(N,C)$ phase. With increasing $CO_2$ content and total flow rate in gaseous nitrocarburizing, the amount of ${\varepsilon}-Fe_{2-3}(N,C)$ phase in the compound layer was increased. The current density of passivity decreased with increasing $CO_2$ content due to the development of porous layer at the out most surface of ${\varepsilon}-Fe_{2-3}(N,C)$.

The Piezoelectric and Dielectric Properties of PZT-PMFW Piezoelectric Ceramics (PZT-PMFW 압전 세라믹의 압전 및 유전 특성)

  • 이종섭;이문주;이용희;정수현;임기조
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.689-692
    • /
    • 2001
  • In this paper, the pizoelectric and dielectric properties of 0.95Pb(ZrxTil-x)O$_3$- 0.05Pb(Mn$\_$0.2/Fe$\_$0.4/W$\_$0.4/)O$_3$piezoelectric ceramics is investigated as a function of Zr/Ti mole ratio. Also, MPB(Morphotropic Phase Boundary) and optimal sintering temperature is studied using XRD and SEM. As a results, when Zr/Ti mole ratio is 52/48, electromechanical coupling factor, k$\_$p/, is 58[%], permittivity, $\varepsilon$$\^$T/$\_$33//$\varepsilon$0, is 1360 and piezoelectric strain constant, d$\_$33/ is 265[pC/N] and the piezoelectric and dielectric properties become maximum. Phase transition temperature of its ternary piezoelectric system is about 350[$^{\circ}C$]. From the XRD analysis, when Zr/Ti mole ratio is 52/48, tetragonal phase transits to rhombohedral phase. Also, From measuring results of the sintering density, when sintering temperature is 1050[$^{\circ}C$], sintering density become maximum and is about 7930[kg/㎥], and average grain size is about 2-3[$\mu\textrm{m}$].

  • PDF

Performance Analysis of the NREL Phase IV Wind Turbine by CFD (CFD에 의한 NREL Phase IV 풍력터빈 성능해석)

  • Kim, Bum-Suk;Kim, Mann-Eung;Lee, Young-Ho
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.652-655
    • /
    • 2008
  • Despite of the laminar-turbulent transition region co-exist with fully turbulence region around the leading edge of an airfoil, still lots of researchers apply to fully turbulence models to predict aerodynamic characteristics. It is well known that fully turbulent model such as standard k-${\varepsilon}$ model couldn't predict the complex stall and the separation behavior on an airfoil accurately, it usually leads to over prediction of the aerodynamic characteristics such as lift and drag forces. So, we apply correlation based transition model to predict aerodynamic performance of the NREL (National Renewable Energy Laboratory) Phase IV wind turbine. And also, compare the computed results from transition model with experimental measurement and fully turbulence results. Results are presented for a range of wind speed, for a NREL Phase IV wind turbine rotor. Low speed shaft torque, power, root bending moment, aerodynamic coefficients of 2D airfoil and several flow field figures results included in this study. As a result, the low speed shaft torque predicted by transitional turbulence model is very good agree with the experimental measurement in whole operating conditions but fully turbulent model(k-${\varepsilon}$) over predict the shaft torque after 7m/s. Root bending moment is also good agreement between the prediction and experiments for most of the operating conditions, especially with the transition model.

  • PDF

Preparation and Characterization of Nanoparticles Using Poly(N-isopropylacrylamide)-$Poly({\varepsilon}-caprolactone)$ and Poly(ethylene glycol)-$Poly({\varepsilon}-caprolactone)$ Block Copolymers with Thermosensitive Function

  • Choi, Chang-Yong;Jang, Mi-Kyeong;Nah, Jae-Woon
    • Macromolecular Research
    • /
    • v.15 no.7
    • /
    • pp.623-632
    • /
    • 2007
  • Thermosensitive nanoparticles were prepared via the self-assembly of two different $poly({\varepsilon}-caprolactone)$-based block copolymers of poly(N-isopropylacrylamide)-b-$poly({\varepsilon}-caprolactone)$ (PNPCL) and poly(ethylene glycol)-b-$poly({\varepsilon}-caprolactone)$ (PEGCL). The self-aggregation and thermosensitive behaviors of the mixed nanoparticles were investigated using $^1H-NMR$, turbidimetry, differential scanning microcalorimetry (micro-DSC), dynamic light scattering (DLS), and fluorescence spectroscopy. The copolymer mixtures (mixed nanoparticles, M1-M5, with different PNPCL content) formed nano-sized self-aggregates in an aqueous environment via the intra- and/or intermolecular association of hydrophobic PCL chains. The microscopic investigation of the mixed nanoparticles showed that the critical aggregation concentration (cac), the partition equilibrium constants $(K_v)$ of pyrene, and the aggregation number of PCL chains per one hydrophobic microdomain varied in accordance with the compositions of the mixed nanoparticles. Furthermore, the PNPCL harboring mixed nanoparticles evidenced phase transition behavior, originated by coil to the globule transition of PNiPAAm block upon heating, thereby resulting in the turbidity change, endothermic heat exchange, and particle size reduction upon heating. The drug release tests showed that the formation of the thermosensitive hydrogel layer enhanced the sustained drug release patterns by functioning as an additional diffusion barrier.

The Effect of grain size on the damping capacity of Fe-26Mn-2Al alloy (Fe-26Mn-2Al 합금의 진동 감쇠능에 미치는 결정립 크기의 영향)

  • Kang, C.Y.;Eom, J.H.;Kim, H.J.;Sung, J.H.
    • Journal of Power System Engineering
    • /
    • v.11 no.1
    • /
    • pp.115-120
    • /
    • 2007
  • The effect of grain size on the damping capacity of Fe-26Mn-2Al alloy studied in this paper has been investigated after changing the microstructure by cold rolling and changing grain size. Micro structures in Fe-26Mn-2Al at room temperature consist of a large quantity of austenite and a small quantity of ${\varepsilon}\;and\;{\alpha}'$ martensite. And ${\varepsilon}\;and\;{\alpha}'$ martensite was increased by increasing the degree of cold rolling. The content of deformation induced martensite was increased with increasing the degree of cold rolling. Damping capacity was linearly increased with increasing ${\varepsilon}$ martensite content, which suggests that stacking faults and ${\varepsilon}$ martensite variant boundaries are the principle damping sources. With increasing the grain size in Fe-26Mn-2Al alloy, the damping capacity was increased due to increasing the volume fraction of ${\varepsilon}$ martensite by decrement in stability of austenite phase. With decreasing the grain size, the content of deformation induced martensite was decreased and the damping capacity was decreased.

  • PDF

Effect of Mn-Addition on the Sliding Wear Resistance and the Cavitation Erosion Resistance of Fe-base Hardfacing Alloy (Mn 첨가가 경면처리용 Fe계 신합금의 캐비테이션 에로젼과 슬라이딩 마모저항성에 미치는 영향)

  • Kim, Yoon-Kap;Oh, Young-Min;Kim, Seon-Jin
    • Korean Journal of Materials Research
    • /
    • v.12 no.7
    • /
    • pp.550-554
    • /
    • 2002
  • The effect of Mn on cavitation erosion resistance and the sliding wear resistance of Fe-base hardfacing NewAlloy was investigated. Mn is known to decrease stacking fault energy and enhance the formation of $\varepsilon$-martensite. Cavitation erosion resistance for 50 hours and sliding wear resistance for 100 cycles were evaluated by weight loss. Fe-base hardfacing NewAlloy showed more excellent cavitation erosion resistance than Mn-added NewAlloys. $\Upsilon-\alpha$' phase transformation that can enhance erosion resistance by matrix hardening occurred in every specimens. But, only in Mn free Fe-base hardfacing NewAlloy, the hardened matrix could repress the propagation of cracks that was initialed at the matrix-carbides interfaces more effectively than Mn-added NewAlloy The Mn free Fe-base hardfacing NewAlloy showed better sliding wear resistance than Mn-added alloys. Mn-addition up to 5wt.% couldn't increase the sliding wear and cavitation erosion resistance of Fe-base hardfacing alloy because it didn't make $\Upsilon\to\varepsilon$ martensite phase transformation. Therefore, it is considered that the cavitation erosion and the sliding wear resistance can be improved due to $\Upsilon\to\varepsilon$ martensite phase transformation when Mn is added more than 5wt.% in Fe-base hardfacing alloys.

Sintering and Microwave Properties of Ba Hexagonal Ferrite (Ba 육방정 페라이트의 소결 특성 및 마이크로파 특성)

  • Kim, Jae-Sik;Ryu, Ki-Won;Bae, Seon-Gi;Lee, Young-Hie
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1293_1294
    • /
    • 2009
  • The sintering and high frequency electro-magnetic properties of Ba-hexagonal ferrite were investigated. All samples of the Ba-hexagonal ferrite were prepared by the conventional mixed oxide method and sintered at $1150^{\circ}C$~$1400^{\circ}C$. From the X-ray diffraction patterns of sintered Ba-hexagonal ferrite, the $Ba_3Co_2Fe_{24}O_{41}$ phase was represented as main phase in the almost sintering conditions. The bulk densities with sintering temperature and decreased at $1400^{\circ}C$. The permittivity ($\varepsilon$') and loss tangent of permittivity ($\varepsilon$"/$\varepsilon$') of $Ba_3Co_2Fe_{24}O_{41}$ ceramics increased and decreased with sintering temperature, respectively. The permeability of $Ba_3Co_2Fe_{24}O_{41}$ ceramics decreased with sinteirng temperature. The loss tangent of permeability was not changed compared each other with sintering temperature. The bulk density of $Ba_3Co_2Fe_{24}O_{41}$ ceramics sintered at $1300^{\circ}C$ was 4.79 g/$cm^3$. The permittivity, loss tangent of permittivity and permeability, loss tangent of permeability were 19.896, 0.1718 and 14.218, 0.2046 at 210 MHz, respectively.

  • PDF

The Effect of Alloy Elements on the Damping Capacity and Plasma Ion Nitriding Characteristic of Fe-Cr-Mn-X Alloys [I Damping Capacity] (Fe-Cr-Mn-X계 합금의 감쇠능 및 플라즈마이온질화 특성에 미치는 합금원소의 영향 [I 감쇠능])

  • Son, D.U.;Jeong, S.H.;Kim, J.H.;Lee, J.M.;Kim, I.S.;Kang, C.Y.
    • Journal of Power System Engineering
    • /
    • v.9 no.1
    • /
    • pp.70-75
    • /
    • 2005
  • The damping property of Fe-12Cr-22Mn-X alloys has been investigated to develop high damping and high strength alloy. Particularly, the effect of the phase of austenite, alpha and epsilon martensite, which constitute the structure of the alloys Fe-12Cr-22Mn-X alloys, on the damping capacity at room temperature has been investigated. Various fraction of these phases were formed depending on the alloy element and cold work degree. The damping capacity is strongly affected by ${\varepsilon}$ martensite while the other phase, such as ${\alpha}'$ martensite, actually exhibit little effect on damping capacity. In case of Fe-12Cr-22Mn-3Co alloy, the large volume fraction of ${\varepsilon}$ martensite formed at about 30% cold rolling, and in case of Fe-12Cr-22Mn-1Ti alloy, formed at about 20% cold rolling and showed the highest damping capacity. Damping capacity showed higher value in Fe-12Cr-22Mn-1Ti alloy than one in Fe-12Cr-22Mn-3Co alloy.

  • PDF