• Title/Summary/Keyword: ${\sigma}$-phase precipitation

Search Result 36, Processing Time 0.028 seconds

A Study on the Precipitation of σ Phase in Super Duplex Stainless Steel (슈퍼 2상 스테인리스강의 σ상 석출에 관한 연구)

  • Gang, Chang-Yong;Klm, Ick-Soo
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.14 no.5
    • /
    • pp.286-291
    • /
    • 2001
  • This study was carried out to investigate the influence of ${\sigma}$ phase on the microstructure and mechanical properties in super duplex stainless steel. The precipitation of ${\sigma}$ phase during isothermal heat treatment showed the type S curves with a certain incubation period. The precipitation of ${\sigma}$ phase was precipitated at ferrite phase and interface of ferrite and austenite. Under the state of isothermal transformation, the precipitation of ${\sigma}$ phase was stimulated by applied stress. With increasing of volume fraction of precipitated ${\sigma}$ phase, tensile strength was increased and elongation was decreased with linear relationship, while in case of precipitated ${\sigma}$ phase was 5% over, impact value was rapidly decreased.

  • PDF

Effects of Sigma ($\sigma$) Phase on the Pitting Corrosion of 25% Cr Duplex Stainless Steel; Investigations by means of Electrochemical Noise Measurement

  • Park, Chan-Jin;Kwon, Hyuk-Sang;Kim, Hee-San
    • Corrosion Science and Technology
    • /
    • v.2 no.1
    • /
    • pp.18-25
    • /
    • 2003
  • Effects of the precipitation of $\sigma$ phase on the metastable pitting as a precursor of stable pitting corrosion and also on the progress of stale pitting of the 25Cr-7Ni-3Mo-0.25N duplex stainless steel were investigated in chloride solution. Electrochemical potential and current noises of the alloy were measured in 10 % ferric chloride solution ($FeCl_3$) with zero resistance ammeter (ZRA), and then analyzed by power spectral density (PSD) and by corrosion admittance ($A_c$) spectrum. With aging at $850^{\circ}C$, the passive film of the alloy was found to get significantly unstable as represented by power spectral density (PSD) and a transition from metastable pitting state to stable one was observed. In the corrosion admittance spectrum, the number of negative $A_c$ corresponding to the state of localized corrosion increased with aging, suggesting that the precipitation of $\sigma$ phase considerably degraded the passive film by depleting Cr and Mo around it at $\alpha/\sigma$ or $\gamma/\sigma$ phase boundaries, thereby leading to the initiation of the pitting corrosion. However, the Cr and Mo at $\alpha/\sigma$ or $\gamma/\sigma$ phase boundaries which were once depleted due to the precipitation of the $\sigma$ phase were partly replenished by the diffusion of Cr and Mo from the surrounding matrix with aging time longer. The initiation of pitting seems to be associated with the precipitation density of the $\sigma$ phase with an effective size needed to induce the sufficient depletion of Cr and Mo around it.

Effect of Sigma Phase on Electrochemical Corrosion Characteristics of a Deposited Metal of ER2594 (ER2594 용착금속의 전기화학적 부식특성에 미치는 시그마상의 영향)

  • Jung, Byong-Ho;Kim, Si-Young;Seo, Gi-Jeong;Park, Joo-Young
    • Journal of Power System Engineering
    • /
    • v.19 no.6
    • /
    • pp.75-81
    • /
    • 2015
  • A deposited metal specimen of ER2594 which is a super duplex steel welding wire used to investigate the effect of sigma(${\sigma}$) phase on electrochemical corrosion characteristics was prepared by gas tungsten arc welding. Aging treatment was conducted for the specimen at the temperature range of $700^{\circ}C$ to $900^{\circ}C$ for 5 to 300 minutes after annealing at $1050^{\circ}C$. Corrosion current density has decreased a little with an increase of aging time over 60 minutes at $700^{\circ}C$ to $900^{\circ}C$ and the uniform corrosion of deposited metal had more influence on the precipitation of ferrite than the precipitation of sigma phase. Therefore, the precipitation of sigma phase did not have much effect on the uniform corrosion. Pitting potential representing pitting corrosion has shown decreasing tendency as the precipitation of sigma phase increased. The degree of sensitization representing intergranular corrosion has shown increasing tendency as the precipitation of sigma phase increased at $700^{\circ}C$ to $800^{\circ}C$, while it has decreased at $900^{\circ}C$ for 60 to 300 minutes.

Effect of and R Phase on the Pitting Corrosion in Super Duplex Stainless Steel (슈퍼 2상 스테인리스강의 공식에 미치는 R상의 영향)

  • Lee, Byung-Chan;Oh, Eun-Ji;Kang, Chang-Yong
    • Korean Journal of Materials Research
    • /
    • v.24 no.11
    • /
    • pp.610-616
    • /
    • 2014
  • In this study, we investigated the precipitation behavior of the R-phase precipitated at the initial stage of aging and its effect on the pitting corrosion of 25%Cr-7%Ni-4%Mo super duplex stainless steel. The R-phase in super duplex stainless steel was mainly precipitated at the interface of ferrite/austenite phases and inside of the ferrite phase during the initial stage of aging, and it was transformed into the ${\sigma}$-phase with an increase in aging time. The ferrite phase was decomposed into a new austenite phase and ${\sigma}$-phase. The R phase was an intermetallic compound, which represented a lower Ni and higher Mo than the matrix, and also had a higher Mo and Cr concentration than the ${\sigma}$ phase. With an increasing aging time, the pitting potential $E_p$ was increased slowly by the precipitation of the R-phase, and it was then steeply decreased by the precipitation of the ${\sigma}$-phase. The R-phase was decreased the pitting potential, but its effect was smaller than effect of ${\sigma}$-phase.

Effects of Tungsten on the Precipitation Kinetics of Secondary Phases and the Associated Susceptibility to Pitting Corrosion in Duplex Stainless Steels

  • Park, Chan-Jin;Kwon, Hyuk-Sang
    • Corrosion Science and Technology
    • /
    • v.5 no.6
    • /
    • pp.189-195
    • /
    • 2006
  • Effects of tungsten (W) on the precipitation kinetics of secondary phases and the associated resistance to pitting corrosion of 25%Cr duplex stainless steels were investigated through microstructural and electrochemical noise analyses. With the partial substitution of W for Mo in duplex stainless steel, the potential and current noises of the alloy were significantly decreased in chloride solution due to retardation of the ${\sigma}$ phase precipitation. The preferential precipitation of the $\chi$ phase in the W-containing alloy during the early period of aging contributed to retarding the precipitation of the $\sigma$ phase by depleting W and Mo along grain boundaries. In addition, the retardation of the nucleation and growth of the $\sigma$ phase in the W-containing alloy appears to be attributed to the inherently low diffusivity of W compared with that of Mo.

Effect of Cooling Rate on Microstructural and Mechanical Properties of SAF 2205 Duplex Stainless Steel (SAF 2205 듀플렉스 스테인레스강의 미세조직 및 기계적 특성에 미치는 냉각속도의 영향)

  • Oh, Y.J.;Yang, W.J.;Lee, J.H.;Kim, D.H.;Yoo, W.D.;Lee, J.H.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.26 no.1
    • /
    • pp.14-20
    • /
    • 2013
  • Duplex stainless steel, which is a kind of stainless steel with a mixed microstructure of about equal proportions of austenite and ferrite, is generally known as a unique material with excellent corrosion resistance and high strength. However, toughness, strength, and corrosion resistance of the steel could be reduced due to precipitation of topologically closed packed phases such as sigma phase during cooling. In case of large forged products, they have strong possibility that ${\sigma}$-phase precipitates due to difference of cooling rate between surface and inner of the products. Investigation on sigma phase precipitation behavior of duplex stainless steel with change of cooling rate was carried out in this study. Forged SAF 2205 duplex stainless steel was used as specimens to examine the cooling rate effect. Dissolution behavior of sigma phase was also discussed through resolution test of duplex stainless steel containing lots of sigma phase. Experimental results revealed that impact energy was very sensitive to precipitation of small amount sigma phase. However, sigma phase could be removed by short term resolution treatment and impact resistance of the duplex stainless steel was restored.

The Influence of Heat Treatment Temperature on Microstructure and Corrosion Behavior of SDSS Tube (SDSS (Super Duplex Stainless Steel) 강관의 미세조직 및 부식특성에 미치는 열처리 온도의 영향)

  • Lee, Insup;Cheon, Chang-seok;Yim, Tai-Hong;Han, Yoon-Ho;Lee, Myon-Hag
    • Journal of the Korean institute of surface engineering
    • /
    • v.48 no.6
    • /
    • pp.329-334
    • /
    • 2015
  • The aim of this paper is to determine the proper heat treatment temperature for SDSS tube production without ${\sigma}$-phase precipitation. When Mother steel tube was heat treated at $800^{\circ}C$ temperature, relatively a large amount of ${\sigma}$-phase precipitated and grain refinement of ferrite phase occurred simultaneously. However, in Pilgered and Drawn steel tubes, grain refinement of the ferrite phase did not occur and a small amount of ${\sigma}$-phase precipitated. For all three types of steel tubes, the pitting potential was reduced to 2/5 or less compared with the untreated one and corrosion also occurred in the salt spray test due to the precipitation of ${\sigma}$-phase. When heat treatment temperature was $900^{\circ}C$, grain refinement of the ferrite phase occurred and very little ${\sigma}$-phase precipitated in Pilgered and Drawn steel tubes. But when heat treatment was done at $1,000^{\circ}C$ temperature, all three types of steel tubes had a similar corrosion properties of that of untreated one and also corrosion did not occur in the salt spray test, as ${\sigma}$-phase did not precipitate. Therefore, the optimum heat treatment temperature range is determined to be more than $1000^{\circ}C$ for the SDSS at which corrosion does not occur.

Effect of W Substitution on the Precipitation Behavior of χ and σ Phase in Super Duplex Stainless Steels (슈퍼 2상 스테인리스강에서 χ와 σ상의 석출거동에 미치는 W치환의 영향)

  • Han, Huyn-Sung;Kim, Seong-Hwi;Kang, Chang-Yong
    • Korean Journal of Materials Research
    • /
    • v.26 no.4
    • /
    • pp.200-206
    • /
    • 2016
  • This study was carried out to investigate the effect of W substitution on the precipitation behavior of ${\chi}$ and ${\sigma}$ phases in super duplex stainless steel. The ${\chi}$ phase was precipitated at the interface of ferrite / austenite phases and inside the ferrite phase at the initial stage of aging. With an increase in the aging time, the volume fraction of the ${\chi}$ phase increased, and then decreased with the transformation from the ${\chi}$ phase to the ${\sigma}$ phase. The ${\sigma}$ phase was precipitated later than the ${\chi}$ phase, and the volume fraction of x phase increased with the increase in the aging time. The ferrite phase was decomposed into the new austenite (${\gamma}2$) and ${\sigma}$ phases by aging treatment. The decomposition of the ferrite phase into the ${\gamma}2$ and ${\sigma}$ phases was retarded by W substitution for Mo. The volume fraction of the ${\chi}$ phase increased and that of the ${\sigma}$ phase decreased due to W substitution. The ${\chi}$ and ${\sigma}$ phases were intermetallic compounds, which had lower nickel concentration, and higher chromium, molybdenum, and tungsten concentrations. The ${\chi}$ phase has higher molybdenum and tungsten concentrations than those of the ${\sigma}$ phase. The amounts of chromium and nickel in the ${\chi}$ and ${\sigma}$ phases did not change, but these phases have higher concentrations of molybdenum and tungsten due to W substitution for Mo.

Effect of R Phase Formation on the Mechanical Properties of 25Cr-7Ni-2Mo-4W Super Duplex Stainless Steel (25Cr-7Ni-2Mo-4W 슈퍼 2상 스테인리스강의 기계적 성질에 미치는 R상의 영향)

  • Lee, Byung-Chan;Kang, Chang-Yong
    • Korean Journal of Materials Research
    • /
    • v.24 no.8
    • /
    • pp.401-406
    • /
    • 2014
  • In this study, we investigated the precipitation behavior of the R-phase precipitated at the initial stage of aging and its effects on the mechanical properties of 25%Cr-7%Ni-2%Mo-4%W super duplex stainless steel. The R-phase was mainly precipitated at the interface of ferrite/austenite phases and inside of the ferrite phase during the initial stage of aging. It was transformed into the ${\sigma}$-phase with an increase of the aging time. The ferrite phase was decomposed into a new austenite(${\gamma}_2$)phase and the ${\sigma}$-phase by an aging treatment. The R phase was an intermetallic compound showing higher molybdenum and tungsten concentrations than the matrix and also showed higher molybdenum and tungsten concentrations than the ${\sigma}$ phase. In the initial stage of aging, precipitation of the R-phase did not change the hardness, the strength and the elongation. The hardness and the strength increased upon a longer aging time, but the elongation rapidly decreased. These results show that the R-phase did not significantly affect the hardness and the strength, though it did influence the elongation.

High Temperature Precipitation Behavior of High-Nitrogen Duplex Stainless Steel (고질소 2상 스테인리스강의 고온 석출거동)

  • Bae, Jong-In;Kim, Sung-Tae;Lee, Tae-Ho;Ha, Heon-Young;Kim, Sung-Joon;Park, Yong-Ho
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.2
    • /
    • pp.93-103
    • /
    • 2011
  • Precipitation behavior of high-nitrogen duplex Fe-24Cr-7Mn-4Ni-4Mo-0.43N stainless steel aged at $850^{\circ}C$ was investigated using scanning transmission electron microscopy. Based on the analyses of selected area diffraction patterns, four kinds of precipitates (intermetallic sigma (${\sigma}$) and chi (${\chi}$), $Cr_2N$ and secondary austenite) were identified. At the ferrite/austenite phase boundary, the ${\sigma}$ phase and secondary austenite were formed via ${\alpha}{\rightarrow}{\gamma}+{\sigma}$ eutectoid reaction. The precipitation of $Cr_2N$ occurred at the austenite grain boundary as well as the interior of the ferrite. The intermetallic ${\chi}$ phase also formed within the ferrite and showed a cube-cube orientation relationship with the ferrite. Further aging produced a lamellar structure composed of $Cr_2N$ and austenite along the ferrite/austenite boundary and enhanced the precipitation of the ${\chi}$ phase. The crystallographic features of the precipitates were also examined in terms of the orientation relationship with the austenite or ferrite matrix.