• Title/Summary/Keyword: ${\psi}$-open set

Search Result 5, Processing Time 0.022 seconds

A Unified Theory for Certain Weak Forms of Open Sets and Their Variant Forms

  • Roy, Bishwambhar;Seny, Ritu
    • Kyungpook Mathematical Journal
    • /
    • v.52 no.4
    • /
    • pp.405-412
    • /
    • 2012
  • The purpose of the present paper is towards working out a unified version of the study of certain weak forms of generalized open sets and their neighbouring forms, as are already available in the literature. In terms of an operation, as initiated by $\acute{A}$. Cs$\acute{a}$sz$\acute{a}$r, we introduce unified definitions of ${\wedge}_{\psi}$-sets, ${\vee}_{\psi}$-sets, $g{\cdot}{\wedge}_{\psi}$-sets and $g{\cdot}{\vee}_{\psi}$-sets and derive results concerning them.

BOUNDED, COMPACT AND SCHATTEN CLASS WEIGHTED COMPOSITION OPERATORS BETWEEN WEIGHTED BERGMAN SPACES

  • Wolf, Elke
    • Communications of the Korean Mathematical Society
    • /
    • v.26 no.3
    • /
    • pp.455-462
    • /
    • 2011
  • An analytic self-map ${\phi}$ of the open unit disk $\mathbb{D}$ in the complex plane and an analytic map ${\psi}$ on $\mathbb{D}$ induce the so-called weighted composition operator $C_{{\phi},{\psi}}$: $H(\mathbb{D})\;{\rightarrow}\;H(\mathbb{D})$, $f{\mapsto} \;{\psi}\;(f\;o\;{\phi})$, where H($\mathbb{D}$) denotes the set of all analytic functions on $\mathbb{D}$. We study when such an operator acting between different weighted Bergman spaces is bounded, compact and Schatten class.

SINGULAR INNER FUNCTIONS OF $L^{1}-TYPE$

  • Izuchi, Keiji;Niwa, Norio
    • Journal of the Korean Mathematical Society
    • /
    • v.36 no.4
    • /
    • pp.787-811
    • /
    • 1999
  • Let M be the maximal ideal space of the Banach algebra $H^{\infty}$ of bounded analytic functions on the open unit disc $\triangle$. For a positive singular measure ${\mu}\;on\;{\partial\triangle},\;let\;{L_{+}}^1(\mu)$ be the set of measures v with $0\;{\leq}\;{\nu}\;{\ll}\;{\mu}\;and\;{{\psi}_{\nu}}$ the associated singular inner functions. Let $R(\mu)\;and\;R_0(\mu)$ be the union sets of $\{$\mid$\psiv$\mid$\;<\;1\}\;and\;\{$\mid${\psi}_{\nu}$\mid$\;<\;0\}\;in\;M\;{\setminus}\;{\triangle},\;{\nu}\;\in\;{L_{+}}^1(\mu)$, respectively. It is proved that if $S(\mu)\;=\;{\partial\triangle}$, where $S(\mu)$ is the closed support set of $\mu$, then $R(\mu)\;=\;R0(\mu)\;=\;M{\setminus}({\triangle}\;{\cup}\;M(L^{\infty}(\partial\triangle)))$ is generated by $H^{\infty}\;and\;\overline{\psi_{\nu}},\;{\nu}\;{\in}\;{L_1}^{+}(\mu)$. It is proved that %d{\theta}(S(\mu))\;=\;0$ if and only if there exists as Blaschke product b with zeros $\{Zn\}_n$ such that $R(\mu)\;{\subset}\;{$\mid$b$\mid$\;<\;1}\;and\;S(\mu)$ coincides with the set of cluster points of $\{Zn\}_n$. While, we proved that $\mu$ is a sum of finitely many point measure such that $R(\mu)\;{\subset}\;\{$\mid${\psi}_{\lambda}$\mid$\;<\;1}\;and\;S(\lambda)\;=\;S(\mu)$. Also it is studied conditions on \mu for which $R(\mu)\;=\;R0(\mu)$.

  • PDF

A GENERIC RESEARCH ON NONLINEAR NON-CONVOLUTION TYPE SINGULAR INTEGRAL OPERATORS

  • Uysal, Gumrah;Mishra, Vishnu Narayan;Guller, Ozge Ozalp;Ibikli, Ertan
    • Korean Journal of Mathematics
    • /
    • v.24 no.3
    • /
    • pp.545-565
    • /
    • 2016
  • In this paper, we present some general results on the pointwise convergence of the non-convolution type nonlinear singular integral operators in the following form: $$T_{\lambda}(f;x)={\large\int_{\Omega}}K_{\lambda}(t,x,f(t))dt,\;x{\in}{\Psi},\;{\lambda}{\in}{\Lambda}$$, where ${\Psi}$ = and ${\Omega}$ = stand for arbitrary closed, semi-closed or open bounded intervals in ${\mathbb{R}}$ or these set notations denote $\mathbb{R}$, and ${\Lambda}$ is a set of non-negative numbers, to the function $f{\in}L_{p,{\omega}}({\Omega})$, where $L_{p,{\omega}}({\Omega})$ denotes the space of all measurable functions f for which $\|{\frac{f}{\omega}}\|^p$ (1 ${\leq}$ p < ${\infty}$) is integrable on ${\Omega}$, and ${\omega}:{\mathbb{R}}{\rightarrow}\mathbb{R}^+$ is a weight function satisfying some conditions.