• Title/Summary/Keyword: ${\phi}_r$

Search Result 323, Processing Time 0.025 seconds

SPECTROPHOTOMETRICAL CLASSIFICATIONS OF STARS (별의 분광 측광학적 분류)

  • U, Jong-Ok
    • Publications of The Korean Astronomical Society
    • /
    • v.9 no.1
    • /
    • pp.69-84
    • /
    • 1994
  • The spectral types of stars can be classified by using Balmer discontinuity($D_B$) and wavelength(${\lambda}_B$) expressed in terms of effective temperatures appeared in Balmer discontinuity. In this research, in order to classify stars, we used the well established observational data of high dispersion spectrophotometry for the spectral types and luminosity classes of stars in the Breger(1976) catalogue. Balmer discontinuity by effective temperatures of stars was accurately measured, and the ${\lambda}_B$ was replaced to luminosity classes of MK system, because of the close relationship between the As and luminosity classes. We measured the energy gradients(${\phi}_R$) of stars which were expressed as a function of spectral types in the interval of ${\lambda}{\lambda}4,000{\sim}4600{\AA}$, and then obtained a new physical parameter(${\phi}$) from the $D_B$ and ${\phi}_B$. The new parameter, ${\phi}$ can be used instead of HD classifications of stars and can be used widely for spectrophotometrical classifications of stars.

  • PDF

THE BRAIDINGS IN THE MAPPING CLASS GROUPS OF SURFACES

  • Song, Yongjin
    • Journal of the Korean Mathematical Society
    • /
    • v.50 no.4
    • /
    • pp.865-877
    • /
    • 2013
  • The disjoint union of mapping class groups of surfaces forms a braided monoidal category $\mathcal{M}$, as the disjoint union of the braid groups $\mathcal{B}$ does. We give a concrete and geometric meaning of the braidings ${\beta}_{r,s}$ in $\mathcal{M}$. Moreover, we find a set of elements in the mapping class groups which correspond to the standard generators of the braid groups. Using this, we can define an obvious map ${\phi}\;:\;B_g{\rightarrow}{\Gamma}_{g,1}$. We show that this map ${\phi}$ is injective and nongeometric in the sense of Wajnryb. Since this map extends to a braided monoidal functor ${\Phi}\;:\;\mathcal{B}{\rightarrow}\mathcal{M}$, the integral homology homomorphism induced by ${\phi}$ is trivial in the stable range.

STABILITY OF A BETA-TYPE FUNCTIONAL EQUATION WITH A RESTRICTED DOMAIN

  • Lee, Young-Whan;Choi, Byung-Mun
    • Communications of the Korean Mathematical Society
    • /
    • v.19 no.4
    • /
    • pp.701-713
    • /
    • 2004
  • We obtain the Hyers-Ulam-Rassias stability of a betatype functional equation $f(\varphi(x),\phi(y))$ = $ \psi(x,y)f(x,y)+ \lambda(x,y)$ with a restricted domain and the stability in the sense of R. Ger of the equation $f(\varphi(x),\phi(y))$ = $ \psi(x,y)f(x,y)$ with a restricted domain in the following settings: $g(\varphi(x),\phi(y))-\psi(x,y)g(s,y)-\lambda(x,y)$\mid$\leq\varepsilon(x,y)$ and $\frac{g(\varphi(x),\phi(y))}{\psi(x,y),g(x,y)}-1 $\mid$ \leq\epsilon(x,y)$.

Study on the Travel and Tractive Characteristics of the Two-Wheel Tractor on the General Slope Land(III)-Tractive Performance of Power Tiller- (동력경운기의 경사지견인 및 주행특성에 관한 연구 (III)-동력경운의 경사지 견인성능-)

  • 송현갑;정창주
    • Journal of Biosystems Engineering
    • /
    • v.3 no.2
    • /
    • pp.35-61
    • /
    • 1978
  • To find out the power tiller's travel and tractive characteristics on the general slope land, the tractive p:nver transmitting system was divided into the internal an,~ external power transmission systems. The performance of power tiller's engine which is the initial unit of internal transmission system was tested. In addition, the mathematical model for the tractive force of driving wheel which is the initial unit of external transmission system, was derived by energy and force balance. An analytical solution of performed for tractive forces was determined by use of the model through the digital computer programme. To justify the reliability of the theoretical value, the draft force was measured by the strain gauge system on the general slope land and compared with theoretical values. The results of the analytical and experimental performance of power tiller on the field may be summarized as follows; (1) The mathematical equation of rolIing resistance was derived as $$Rh=\frac {W_z-AC \[1+ \frac{sl}{K} \(\varrho ^{-\frac{sl}{K}-1\)\] sin\theta_1}} {tan\phi \[1+ \frac{sl}{K} \(\varrho ^{-\frac{sl}{K}-1\)\]+\frac{tan\theta_1}{1}$$ and angle of rolling resistance as $$\theta _1 - tan^1\[ \frac {2T(AcrS_0 - T)+\sqrt (T-AcrS_0)^2(2T)^2-4(T^2-W_2^2r^2)\times (T-AcrS_0)^2 W_z^2r^2S_0^2tan^2\phi} {2(T^2-W_z^2r^2)S_0tan\phi}\] $$and the equation of frft force was derived as$$P=(AC+Rtan\phi)\[1+ \frac{sl}{K} \(\varrho ^{-\frac{sl}{K}-1\)\]cos\phi_1 \ulcorner \frac {W_z \ulcorner{AC\[ [1+ \frac{sl}{K} \(\varrho ^{-\frac{sl}{K}-1\)\]sin\phi_1 {tan\phi[1+ \frac{sl}{K} \(\varrho ^{-\frac{sl}{K}-1\]+ \frac {tan\phi_1} { 1} \ulcorner W_1sin\alpha $$The slip coefficient K in these equations was fitted to approximately 1. 5 on the level lands and 2 on the slope land. (2) The coefficient of rolling resistance Rn was increased with increasing slip percent 5 and did not influenced by the angle of slope land. The angle of rolling resistance Ol was increasing sinkage Z of driving wheel. The value of Ol was found to be within the limits of Ol =2\ulcorner "'16\ulcorner. (3) The vertical weight transfered to power tiller on general slope land can be estim ated by use of th~ derived equation: $$R_pz= \frac {\sum_{i=1}^{4}{W_i}} {l_T} { (l_T-l) cos\alpha cos\beta \ulcorner \bar(h) sin \alpha - W_1 cos\alpha cos\beta$$The vertical transfer weight $R_pz$ was decreased with increasing the angle of slope land. The ratio of weight difference of right and left driving wheel on slop eland,$\lambda= \frac { {W_L_Z} - {W_R_Z}} {W_Z} $, was increased from ,$\lambda$=0 to$\lambda$=0.4 with increasing the angle of side slope land ($\beta = 0^\circ~20^\circ) (4) In case of no draft resistance, the difference between the travelling velocities on the level and the slope land was very small to give 0.5m/sec, in which the travelling velocity on the general slope land was decreased in curvilinear trend as the draft load increased. The decreasing rate of travelling velocity by the increase of side slope angle was less than that by the increase of hill slope angle a, (5) Rate of side slip by the side slope angle was defined as $ S_r=\frac {S_s}{l_s} \times$ 100( %), and the rate of side slip of the low travelling velocity was larger than that of the high travelling velocity. (6) Draft forces of power tiller did not affect by the angular velocity of driving wheel, and maximum draft coefficient occurred at slip percent of S=60% and the maximum draft power efficiency occurred at slip percent of S=30%. The maximum draft coefficient occurred at slip percent of S=60% on the side slope land, and the draft coefficent was nearly constant regardless of the side slope angle on the hill slope land. The maximum draft coefficient occurred at slip perecent of S=65% and it was decreased with increasing hill slope angle $\alpha$. The maximum draft power efficiency occurred at S=30 % on the general slope land. Therefore, it would be reasonable to have the draft operation at slip percent of S=30% on the general slope land. (7) The portions of the power supplied by the engine of the power tiller which were used as the source of draft power were 46.7% on the concrete road, 26.7% on the level land, and 13~20%; on the general slope land ($\alpha = O~ 15^\circ ,\beta = 0 ~ 10^\circ$) , respectively. Therefore, it may be desirable to develope the new mechanism of the external pO'wer transmitting system for the general slope land to improved its performance.l slope land to improved its performance.

  • PDF

Study on the Travel and Tractive Characteristics of the Two-Wheel Tractor on the General Slope Land(Ⅲ)-Tractive Performance of Power Tiller- (동력경운기의 경사지견인 및 주행특성에 관한 연구 (Ⅲ)-동력경운의 경사지 견인성능-)

  • Song, Hyun Kap;Chung, Chang Joo
    • Journal of Biosystems Engineering
    • /
    • v.3 no.2
    • /
    • pp.34-34
    • /
    • 1978
  • To find out the power tiller's travel and tractive characteristics on the general slope land, the tractive p:nver transmitting system was divided into the internal an,~ external power transmission systems. The performance of power tiller's engine which is the initial unit of internal transmission system was tested. In addition, the mathematical model for the tractive force of driving wheel which is the initial unit of external transmission system, was derived by energy and force balance. An analytical solution of performed for tractive forces was determined by use of the model through the digital computer programme. To justify the reliability of the theoretical value, the draft force was measured by the strain gauge system on the general slope land and compared with theoretical values. The results of the analytical and experimental performance of power tiller on the field may be summarized as follows; (1) The mathematical equation of rolIing resistance was derived as $$Rh=\frac {W_z-AC \[1+ \frac{sl}{K} \(\varrho ^{-\frac{sl}{K}-1\)\] sin\theta_1}} {tan\phi \[1+ \frac{sl}{K} \(\varrho ^{-\frac{sl}{K}-1\)\]+\frac{tan\theta_1}{1}$$ and angle of rolling resistance as $$\theta _1 - tan^1\[ \frac {2T(AcrS_0 - T)+\sqrt (T-AcrS_0)^2(2T)^2-4(T^2-W_2^2r^2)\times (T-AcrS_0)^2 W_z^2r^2S_0^2tan^2\phi} {2(T^2-W_z^2r^2)S_0tan\phi}\] $$and the equation of frft force was derived as$$P=(AC+Rtan\phi)\[1+ \frac{sl}{K} \(\varrho ^{-\frac{sl}{K}-1\)\]cos\phi_1 ? \frac {W_z ?{AC\[ [1+ \frac{sl}{K} \(\varrho ^{-\frac{sl}{K}-1\)\]sin\phi_1 {tan\phi[1+ \frac{sl}{K} \(\varrho ^{-\frac{sl}{K}-1\]+ \frac {tan\phi_1} { 1} ? W_1sin\alpha $$The slip coefficient K in these equations was fitted to approximately 1. 5 on the level lands and 2 on the slope land. (2) The coefficient of rolling resistance Rn was increased with increasing slip percent 5 and did not influenced by the angle of slope land. The angle of rolling resistance Ol was increasing sinkage Z of driving wheel. The value of Ol was found to be within the limits of Ol =2? "'16?. (3) The vertical weight transfered to power tiller on general slope land can be estim ated by use of th~ derived equation: $$R_pz= \frac {\sum_{i=1}^{4}{W_i}} {l_T} { (l_T-l) cos\alpha cos\beta ? \bar(h) sin \alpha - W_1 cos\alpha cos\beta$$The vertical transfer weight $R_pz$ was decreased with increasing the angle of slope land. The ratio of weight difference of right and left driving wheel on slop eland,$\lambda= \frac { {W_L_Z} - {W_R_Z}} {W_Z} $, was increased from ,$\lambda$=0 to$\lambda$=0.4 with increasing the angle of side slope land ($\beta = 0^\circ~20^\circ) (4) In case of no draft resistance, the difference between the travelling velocities on the level and the slope land was very small to give 0.5m/sec, in which the travelling velocity on the general slope land was decreased in curvilinear trend as the draft load increased. The decreasing rate of travelling velocity by the increase of side slope angle was less than that by the increase of hill slope angle a, (5) Rate of side slip by the side slope angle was defined as $ S_r=\frac {S_s}{l_s} \times$ 100( %), and the rate of side slip of the low travelling velocity was larger than that of the high travelling velocity. (6) Draft forces of power tiller did not affect by the angular velocity of driving wheel, and maximum draft coefficient occurred at slip percent of S=60% and the maximum draft power efficiency occurred at slip percent of S=30%. The maximum draft coefficient occurred at slip percent of S=60% on the side slope land, and the draft coefficent was nearly constant regardless of the side slope angle on the hill slope land. The maximum draft coefficient occurred at slip perecent of S=65% and it was decreased with increasing hill slope angle $\alpha$. The maximum draft power efficiency occurred at S=30 % on the general slope land. Therefore, it would be reasonable to have the draft operation at slip percent of S=30% on the general slope land. (7) The portions of the power supplied by the engine of the power tiller which were used as the source of draft power were 46.7% on the concrete road, 26.7% on the level land, and 13~20%; on the general slope land ($\alpha = O~ 15^\circ ,\beta = 0 ~ 10^\circ$) , respectively. Therefore, it may be desirable to develope the new mechanism of the external pO'wer transmitting system for the general slope land to improved its performance.

Effects of SPS Mold on the Properties of Sintered and Simulated SiC-ZrB2 Composites

  • Lee, Jung-Hoon;Kim, In-Yong;Kang, Myeong-Kyun;Jeon, Jun-Soo;Lee, Seung-Hoon;Jeon, An-Gyun;Shin, Yong-Deok
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.6
    • /
    • pp.1474-1480
    • /
    • 2013
  • Silicon carbide (SiC)-zirconium diboride ($ZrB_2$) composites were prepared by subjecting a 60:40 vol% mixture of ${\beta}$-SiC powder and $ZrB_2$ matrix to spark plasma sintering (SPS) in 15 $mm{\Phi}$ and 20 $mm{\Phi}$ molds. The 15 $mm{\Phi}$ and 20 $mm{\Phi}$ compacts were sintered for 60 sec at $1500^{\circ}C$ under a uniaxial pressure of 50 MPa and argon atmosphere. Similar composites were simulated using $Flux^{(R)}$ 3D computer simulation software. The current and power densities of the specimen sections of the simulated SiC-$ZrB_2$ composites were higher than those of the mold sections of the 15 $mm{\Phi}$ and 20 $mm{\Phi}$ mold simulated specimens. Toward the centers of the specimen sections, the current densities in the simulated SiC-$ZrB_2$ composites increased. The power density patterns of the specimen sections of the simulated SiC-$ZrB_2$ composites were nearly identical to their current density patterns. The current densities of the 15 $mm{\Phi}$ mold of the simulated SiC-$ZrB_2$ composites were higher than those of the 20 $mm{\Phi}$ mold in the center of the specimen section. The volume electrical resistivity of the simulated SiC-$ZrB_2$ composite was about 7.72 times lower than those of the graphite mold and the punch section. The power density, 1.4604 $GW/m^3$, of the 15 $mm{\Phi}$ mold of the simulated SiC-$ZrB_2$ composite was higher than that of the 20 $mm{\Phi}$ mold, 1.3832 $GW/m^3$. The $ZrB_2$ distributions in the 20 $mm{\Phi}$ mold in the sintered SiC-$ZrB_2$ composites were more uniform than those of the 15 $mm{\Phi}$ mold on the basis of energy-dispersive spectroscopy (EDS) mapping. The volume electrical resistivity of the 20 $mm{\Phi}$ mold of the sintered SiC-$ZrB_2$ composite, $6.17{\times}10^{-4}{\Omega}cm$, was lower than that of the 15 $mm{\Phi}$ mold, $9.37{\times}10^{-4}{\Omega}{\cdot}cm$, at room temperature.

Effects of Reagent Rotation on Stereodynamics Information of the Reaction O(1D)+H2 (v = 0, j = 0-5) → OH+H: A Theoretical Study

  • Kuang, Da;Chen, Tianyun;Zhang, Weiping;Zhao, Ningjiu;Wang, Dongjun
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.10
    • /
    • pp.2841-2848
    • /
    • 2010
  • Quasiclassical trajectory (QCT) method has been used to investigate stereodynamics information of the reaction $O(^1D)+H_2{\rightarrow}\;OH$+H on the DK (Dobbyn and Knowles) potential energy surface (PES) at a collision energy of 23.06 kcal/mol, with the initial quantum state of reactant $H_2$ being set for v = 0 (vibration quantum number) and j = 0-5 (rotation quantum number). The PDDCSs (polarization dependent differential cross sections) and the distributions of P($\theta_r$), P($\phi_r$), P($\theta_r$, $\phi_r$) have been presented in this work. The results demonstrate that the products are both forward and backward scattered. As j increases, the backward scattering becomes weaker while the forward scattering becomes slightly stronger. The distribution of P($\theta_r$) indicates that the product rotational angular momentum j' tends to align along the direction perpendicular to the reagent relative velocity vector k, but this kind of product alignment is found to be rather insensitive to j. Furthermore, the distribution of P($\phi_r$) indicates that the rotational angular momentum vector of the OH product is preferentially oriented along the positive direction of y-axis, and such product orientation becomes stronger with increasing j.

Mathematical Expression of Eye Movement Using Rotation Matrix (Rotation Matrix를 이용한 안구운동의 수학적 표현)

  • Kim, YongGeun
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.4 no.2
    • /
    • pp.51-55
    • /
    • 1999
  • The eye movement of the eyeball's center of a rotation can represent with the rotation matrix $R_x$, $R_y$, $R_z$ due to a coordinate axis rotation transformation of Cartesian coordinate, and describes of an abduction, an adduction, an elevation, a depression, an intorsion, an extorsion in principle rotation six forms of the eye. The eye movement from primary eye position to tertiary eye position could be composed with the rotation matrix combination, and by the primary rotation of six and the secondary rotation of eight, could be represented with the extrocular muscle of six. The position of the cornea vertex point or pupil point due to the eye movement can describe to transform the rotation matrix of the cartesian coordinate to spherical coordinate$(r,{\theta},{\phi})$.

  • PDF

The Pollutant Emission Characteristics of Lean-Rich Combustion System with Exhaust Gas Recirculation (배기가스 재순환을 적용한 희박-과농 연소시스템의 공해물질 배출특성 연구)

  • Oh, Wheesung;Lee, Chang-Eon;Yu, Byeonghun
    • Journal of the Korean Society of Combustion
    • /
    • v.20 no.2
    • /
    • pp.28-35
    • /
    • 2015
  • In this study, the CH4/air lean-rich combustion system with exhaust gas recirculation (EGR) was investigated to explore the potential for lowering pollutant emissions. To achieve this purpose, experiments of lean-rich combustion system with EGR were conducted to measure the changes in the characteristics of the pollutant emission and flame shape with various equivalence ratios and EGR rates. Here, this study was applied to the fuel distribution ratio of 3:1 for the formation of the lean and rich flames. Additionally, the results were compared with $CH_4$/air lean premixed combustion system. The results show that flame shape of lean-rich combustion system was determined by lean and rich equivalence ratios (${\Phi}_L$ and ${\Phi}_R$) and stratified flame was formed with increasing ${\Phi}_R$. According to the pollutant emission characteristics based on experimental results, the NOx and CO emission index (EINOx and EICO) decreased with increasing EGR rate. Especially, in the range needed to form a stable flame, the reduction rates of EINOx and EICO were approximately 47% and 48% for an EGR rate of 25%, global equivalence ratio of 0.85 and ${\Phi}_L$ of 0.80 compared with lean premixed combustion system (${\Phi}$ = 0.78).

Pseudomonas tolaasii bacteriophage-specific polyclonal antibody formation and its cross reactivity to various phages (Pseudomonas tolaasii 박테리오파지에 특이적인 다클론항체 형성 및 이를 이용한 파지 교차 반응성)

  • Yun, Yeong-Bae;Park, Soo-Jin;Kim, Young-Kee
    • Journal of Applied Biological Chemistry
    • /
    • v.62 no.3
    • /
    • pp.287-292
    • /
    • 2019
  • Pseudomonas tolaasii causes brown blotch disease on the oyster mushroom (Pleurotus ostreatus). Various pathogenic strains of P. tolaasii were isolated and divided into three subtypes, $P1{\alpha}$, $P1{\beta}$, and $P1{\gamma}$. For phage therapy, bacteriophages against to these subtype strains were applied to mushroom cultivation and very successful to prevent from the disease. In this study, bacteriophages were isolated against the representative strains of subtype pathogens and their polyclonal antibodies were synthesized to investigate structural relationship among capsid proteins of phages. Phage preparations over $10^{10}pfu/mL$ were injected to rabbit thigh muscle and polyclonal antibodies were obtained after three times of boost injection. Titers of the antibodies obtained were over $2{\times}10^7Ab/mL$ for the phage ${\phi}6264$, $1{\times}10^6Ab/mL$ for the phage ${\phi}HK2$, and $1{\times}10^7Ab/mL$ for the phage ${\phi}HK19$ and phage ${\phi}HK23$. High specific activities were observed between antibodies and the corresponding bacteriophages. Some cross-reactivities between the antibodies and non-corresponding bacteriophages were also measured. Antibody $Ab{\phi}6264$ inactivated all phages of $P1{\alpha}$ subtype and only phage ${\phi}HK16$ among $P1{\beta}$ subtype phages. Antibody $Ab{\phi}HK23$ of $P1{\gamma}$ subtype neutralized all phages of $P1{\beta}$ subtype as well as the phage ${\phi}HK23$, showing the widest phage-inactivation range. When the structural-similarity studies of phages were investigated by using phage antibodies, closeness obtained by phylogenetic analysis of 16S rRNA genes of pathogenic strains were quite different from that of polyclonal antibody-specific structural similarity of phage capsid proteins. In conclusion, there is weak correlation between the host strain specificity of bacteriophage and its capsid structural similarity measured by phage antibodies.