DOI QR코드

DOI QR Code

THE BRAIDINGS IN THE MAPPING CLASS GROUPS OF SURFACES

  • Received : 2012.09.11
  • Published : 2013.07.01

Abstract

The disjoint union of mapping class groups of surfaces forms a braided monoidal category $\mathcal{M}$, as the disjoint union of the braid groups $\mathcal{B}$ does. We give a concrete and geometric meaning of the braidings ${\beta}_{r,s}$ in $\mathcal{M}$. Moreover, we find a set of elements in the mapping class groups which correspond to the standard generators of the braid groups. Using this, we can define an obvious map ${\phi}\;:\;B_g{\rightarrow}{\Gamma}_{g,1}$. We show that this map ${\phi}$ is injective and nongeometric in the sense of Wajnryb. Since this map extends to a braided monoidal functor ${\Phi}\;:\;\mathcal{B}{\rightarrow}\mathcal{M}$, the integral homology homomorphism induced by ${\phi}$ is trivial in the stable range.

Keywords

References

  1. E. Artin, Theorie der Zopfe, Abh. Math. Sem. Hambur. Univ. 4 (1926), 47-72.
  2. C. Baltenau, Z. Fiedorowicz, R. Schwanzl, and R. Vogt, Iterated monoidal categories, Adv. Math. 176 (2003), no. 2, 277-349. https://doi.org/10.1016/S0001-8708(03)00065-3
  3. C. Berger, Double loop spaces, braided monoidal categories and algebraic 3-type of space, Higher homotopy structures in topology and mathematical physics (Poughkeepsie, NY, 1996), 49-66, Contemp. Math., 227, Amer. Math. Soc., Providence, RI, 1999.
  4. P. Carrasco, A. M. Cegarra, and A. R. Garazon, Classifying spaces for braided monoidal categories and lax diagrams of bicategories, Adv. Math. 226 (2011), no. 1, 419-483. https://doi.org/10.1016/j.aim.2010.06.027
  5. Z. Fiedorowicz, The symmetric bar construction, Preprint, available at http://www.math.osu.edu/edorowicz.1/symbar.ps.gz.
  6. J. Harer, Stability of the homology of the mapping class groups of orientable surfaces, Ann. of Math. (2) 121 (1985), no. 2, 215-249. https://doi.org/10.2307/1971172
  7. N. V. Ivanov, Stabilization of the homology of Teichmuller modular groups, Algebra i Analiz 1 (1989), no. 3, 110-126; translation in Leningrad Math. J. 1 (1990), no. 3, 675-691.
  8. Y. Song, The braidings of mapping class groups and loop spaces, Tohoku Math. J. 52 (2000), no. 2, 309-319. https://doi.org/10.2748/tmj/1178224614
  9. Y. Song, The action of image of braiding under the Harer map, Commun. Korea Math. Soc. 21 (2006), no. 2, 337-345. https://doi.org/10.4134/CKMS.2006.21.2.337
  10. Y. Song and U. Tillmann, Braid, mapping class groups, and categorical delooping, Math. Ann. 339 (2007), no. 2, 377-393. https://doi.org/10.1007/s00208-007-0117-z
  11. U. Tillmann, Artin's map in stable homology, Bull. Lond. Math. Soc. 39 (2007), no. 6, 989-992. https://doi.org/10.1112/blms/bdm075
  12. B. Wajnryb, A simple presentation for the mapping class group of an orientable surface, Israel J. Math. 45 (1983), no. 2-3, 157-174. https://doi.org/10.1007/BF02774014
  13. B. Wajnryb, Artin groups and geometric monodromy, Invent. Math. 138 (1999), no. 3, 563-571. https://doi.org/10.1007/s002220050353
  14. B. Wajnryb, Relations in the mapping class group, Problems on mapping class groups and related topics, 115-120, Proc. Sympos. Pure Math., 74, Amer. Math. Soc., Providence, RI, 2006.