Browse > Article
http://dx.doi.org/10.4134/JKMS.2013.50.4.865

THE BRAIDINGS IN THE MAPPING CLASS GROUPS OF SURFACES  

Song, Yongjin (Departments of Mathematics, Inha University)
Publication Information
Journal of the Korean Mathematical Society / v.50, no.4, 2013 , pp. 865-877 More about this Journal
Abstract
The disjoint union of mapping class groups of surfaces forms a braided monoidal category $\mathcal{M}$, as the disjoint union of the braid groups $\mathcal{B}$ does. We give a concrete and geometric meaning of the braidings ${\beta}_{r,s}$ in $\mathcal{M}$. Moreover, we find a set of elements in the mapping class groups which correspond to the standard generators of the braid groups. Using this, we can define an obvious map ${\phi}\;:\;B_g{\rightarrow}{\Gamma}_{g,1}$. We show that this map ${\phi}$ is injective and nongeometric in the sense of Wajnryb. Since this map extends to a braided monoidal functor ${\Phi}\;:\;\mathcal{B}{\rightarrow}\mathcal{M}$, the integral homology homomorphism induced by ${\phi}$ is trivial in the stable range.
Keywords
braid group; mapping class group; Dehn twists; braided monoidal category; double loop space; plus construction;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 E. Artin, Theorie der Zopfe, Abh. Math. Sem. Hambur. Univ. 4 (1926), 47-72.
2 C. Baltenau, Z. Fiedorowicz, R. Schwanzl, and R. Vogt, Iterated monoidal categories, Adv. Math. 176 (2003), no. 2, 277-349.   DOI   ScienceOn
3 C. Berger, Double loop spaces, braided monoidal categories and algebraic 3-type of space, Higher homotopy structures in topology and mathematical physics (Poughkeepsie, NY, 1996), 49-66, Contemp. Math., 227, Amer. Math. Soc., Providence, RI, 1999.
4 P. Carrasco, A. M. Cegarra, and A. R. Garazon, Classifying spaces for braided monoidal categories and lax diagrams of bicategories, Adv. Math. 226 (2011), no. 1, 419-483.   DOI   ScienceOn
5 Z. Fiedorowicz, The symmetric bar construction, Preprint, available at http://www.math.osu.edu/edorowicz.1/symbar.ps.gz.
6 J. Harer, Stability of the homology of the mapping class groups of orientable surfaces, Ann. of Math. (2) 121 (1985), no. 2, 215-249.   DOI
7 N. V. Ivanov, Stabilization of the homology of Teichmuller modular groups, Algebra i Analiz 1 (1989), no. 3, 110-126; translation in Leningrad Math. J. 1 (1990), no. 3, 675-691.
8 Y. Song, The braidings of mapping class groups and loop spaces, Tohoku Math. J. 52 (2000), no. 2, 309-319.   DOI
9 Y. Song, The action of image of braiding under the Harer map, Commun. Korea Math. Soc. 21 (2006), no. 2, 337-345.   과학기술학회마을   DOI   ScienceOn
10 Y. Song and U. Tillmann, Braid, mapping class groups, and categorical delooping, Math. Ann. 339 (2007), no. 2, 377-393.   DOI
11 U. Tillmann, Artin's map in stable homology, Bull. Lond. Math. Soc. 39 (2007), no. 6, 989-992.   DOI   ScienceOn
12 B. Wajnryb, A simple presentation for the mapping class group of an orientable surface, Israel J. Math. 45 (1983), no. 2-3, 157-174.   DOI
13 B. Wajnryb, Artin groups and geometric monodromy, Invent. Math. 138 (1999), no. 3, 563-571.   DOI
14 B. Wajnryb, Relations in the mapping class group, Problems on mapping class groups and related topics, 115-120, Proc. Sympos. Pure Math., 74, Amer. Math. Soc., Providence, RI, 2006.