• Title/Summary/Keyword: ${\phi}$-projectively semisymmetric

Search Result 2, Processing Time 0.014 seconds

A CLASSIFICATION OF (κ, μ)-CONTACT METRIC MANIFOLDS

  • Yildiz, Ahmet;De, Uday Chand
    • Communications of the Korean Mathematical Society
    • /
    • v.27 no.2
    • /
    • pp.327-339
    • /
    • 2012
  • In this paper we study $h$-projectively semisymmetric, ${\phi}$-pro-jectively semisymmetric, $h$-Weyl semisymmetric and ${\phi}$-Weyl semisym- metric non-Sasakian ($k$, ${\mu}$)-contact metric manifolds. In all the cases the manifold becomes an ${\eta}$-Einstein manifold. As a consequence of these results we obtain that if a 3-dimensional non-Sasakian ($k$, ${\mu}$)-contact metric manifold satisfies such curvature conditions, then the manifold reduces to an N($k$)-contact metric manifold.

η-Ricci Solitons in δ-Lorentzian Trans Sasakian Manifolds with a Semi-symmetric Metric Connection

  • Siddiqi, Mohd Danish
    • Kyungpook Mathematical Journal
    • /
    • v.59 no.3
    • /
    • pp.537-562
    • /
    • 2019
  • The aim of the present paper is to study the ${\delta}$-Lorentzian trans-Sasakian manifold endowed with semi-symmetric metric connections admitting ${\eta}$-Ricci Solitons and Ricci Solitons. We find expressions for the curvature tensor, the Ricci curvature tensor and the scalar curvature tensor of ${\delta}$-Lorentzian trans-Sasakian manifolds with a semisymmetric-metric connection. Also, we discuses some results on quasi-projectively flat and ${\phi}$-projectively flat manifolds endowed with a semi-symmetric-metric connection. It is shown that the manifold satisfying ${\bar{R}}.{\bar{S}}=0$, ${\bar{P}}.{\bar{S}}=0$ is an ${\eta}$-Einstein manifold. Moreover, we obtain the conditions for the ${\delta}$-Lorentzian trans-Sasakian manifolds with a semisymmetric-metric connection to be conformally flat and ${\xi}$-conformally flat.