• 제목/요약/키워드: ${\mu}c$-Si

검색결과 1,469건 처리시간 0.026초

Al-Si/$SiC_p$ 복합재료에서 SiC의 편석에 미치는 응고 조건의 영향 (Influence of Solidification Condition on the Segregation of SiC Particles in the Al-Si/$SiC_p$ Composites)

  • 김종찬;권혁무
    • 한국주조공학회지
    • /
    • 제17권2호
    • /
    • pp.180-187
    • /
    • 1997
  • The influence of solidification condition on the segregation of SiC particles in the $Al-xSi/6wt%SiC_p$(x: 6, 10, 14, 18${\cdot}$wt%) composites was investigated in the study. The results are as follows: 1) During the counter-gravity unidirectional solidification of $Al-Si/SiC_p$ composites melt, most of the SiC particles are pushed to the top of the casting. 2) The SiC particles pushing in the $Al-Si/SiC_p$ composite melts are not observed, when the interface velocity of melts increases more than 1.41 ${\mu}m/sec$. 3) The SiC particles are entrapped in the interdendrite regions, when the sizes of SiC particles in the $Al-Si/SiC_p$ composites are large than ${\varphi}22{\mu}m$.

  • PDF

무가압 침투법에 의해 제조된 $Al-5Mg-X(Si,Cu,Ti)/SiC_p$ 복합재료의 조직 및 마멸특성 (Microstructure and Wear Property of $Al-5Mg-X(Si,Cu,Ti)/SiC_p$ Composites Fabricated by Pressureless Infiltration Method)

  • 우기도;김석원;안행근;정진호
    • 한국주조공학회지
    • /
    • 제20권4호
    • /
    • pp.254-259
    • /
    • 2000
  • Metal matrix composites(MMCs) reinforced with hard particles have many potential application in aerospace structures, auto parts, semiconductor package, heat resistant panels, wear resistant materials and so on. In this work, the effect of SiC partioel sizes(50 and 100 ${\mu}m$) and additional elements such as Si, Cu and Ti on the microstructure and the wear property of $Al-5Mg-X(Si,Cu,Ti)/SiC_p$ composites produced by pressureless infiltration method have been investigated using optical microscopy, scanning eletron microcopy(SEM) with EDS(energy dispersive spectrometry), hardness test, X-ray diffractometer(XRD) and wear test. In present study, the sound $Al-5Mg-X(Si,Cu,Ti)/SiC_p$(50 and 100 ${\mu}m$) composites were fabricated by pressureless infiltration method. The $Al-5Mg-0.3Si-O.1Cu-O.1Ti/SiC_p$ composite with $50 {\mu}m$ size of SiC particle has higher hardness and better wear property than any other composite with $100{\mu}m$ size of SiC particle produced by pressureless infiltration method. The hardness and wear property of $Al-5Mg/SiC_p$(50 and 100 ${\mu}m$) composites were enhanced by the addition of Si, Cu and Ti in Al-5%Mg matrix alloy.

  • PDF

$SiC_p$ 크기를 달리한 $SiC_p$/Al2024 복합재료의 열간 변형특성에 관한연구 (A Study on Hot Deformation Behavior of $SiC_p$/AI2024 Composites Reinforced with Different Sizes of $SiC_p$)

  • 고병철;홍흥기;유연철
    • 소성∙가공
    • /
    • 제7권2호
    • /
    • pp.158-167
    • /
    • 1998
  • Hot restoration mechanism flow stress and stain of the Al2024 composites reinforced with 1,8,15,36, and $44{\mu}m\;SiC_p$(10 vol. %) were studied by hot torsion tests. The hot restoration mechanism of all the composites was found to be dynamic recrystallization(DRX) at $320^{\circ}C$ while that of the composites reinforced with 1 and $8{\mu}m\;SiC_p$ was found to be dynamic recovery(DRX) at $480^{\circ}C$. It was found that the Al2024 composite with $15{\mu}m\;SiC_p$ showed the highest flow stress(${\sim}$223 MPa) at $320^{\circ}C$ under a strain rate of 1.0/sec. Also the highest flow strain of the composites was obtained at $430^{\circ}C$. The com-posites reinforced with 1 and $8{\mu}m\;SiC_p$ showed lower flow stress and higher flow strain at $480^{\circ}C$ than those of the composites reinforced with 15, 36, and $44\;{\mu}m\;SiC_p$ These result were discussed in relation to the transition of the hot restoration mechanism. $DRX{\leftrightarrow}DRV$. The dependence of flow stress on strain rate and temperature was attempted to fit with the hyperbolic sine equation ($\dot{\varepsilon}=A[sinh({\alpha}{\cdot}{\sigma}_p]^n$ exp(-Q/RT)and Zener-Hollomon parameter($Z=\;\dot{\varepsilon}\;exp(Q/RT))$.

  • PDF

분무성형법에 의해 제조된 $Al-SiC)_p$ 금속기 복합재료의 미세조직과 성질에 관한 연구 (A Study on the Microstructures and Properties of $Al-SiC)_p$ Metal Matrix Composites Fabricated by Spray Forming Process)

  • 김춘근
    • 한국분말재료학회지
    • /
    • 제1권1호
    • /
    • pp.42-51
    • /
    • 1994
  • 6061Al-SiCP metal matrix composite materials(MMCs) were fabricated by injecting SiCP particles directly into the atomized spray. The main attraction of this technique is the rapid fabrication of semi-finished, composite products in a combined atomization, particulate injection(10 $\mu\textrm{m}$, 40 $\mu\textrm{m}$, SiCP) and deposition operation. Conclusions obtained are as follows; The microstructure of the unreinforced spray formed 6061Al alloy consisted of relatively fine(50 $\mu\textrm{m}$) equiaxed grains. By comparision, the microstructure of the I/M materials was segregated and consisted of relatively coarse(150 $\mu\textrm{m}$) grains. The probability of clustering of SiCP particles in co-sprayed metal matrix composites increased it ceramic particle size(SiCP) was reduced and the volume fraction was held constant. Analysis of overspray powders collected from the spray atomization and deposition experiments indicated that morphology of powders were nearly spherical and degree of powders sphercity was deviated due to composite with SiCp particles. Interfacial bonding between matrix and ceramics was improved by heat treatment and addition of alloying elements(Mg). Maximum hardness values [Hv: 165 kg/mm2 for Al-10 $\mu\textrm{m}$ SiCp Hv--159 kg/mm2 for Al-40 $\mu\textrm{m}$SiCp] were obtained through the solution heat treatment at $530^{\circ}C$ for 2 hrs and aging at $178^{\circ}C$, and there by the resistance were improved.

  • PDF

다결정 3C-SiC 마이크로 공진기의 온도특성 (Temperature Characteristics of Polycrystalline 3C-SiC Micro Resonators)

  • 정귀상;이태원
    • 한국전기전자재료학회논문지
    • /
    • 제22권4호
    • /
    • pp.314-317
    • /
    • 2009
  • This paper describes the temperature characteristics of polycrystalline 3C-SiC micro resonators. The $1.2{\mu}m$ and $0.4{\mu}m$ thick polycrystalline 3C-SiC cantilever and doubly clamped beam resonators with $60{\sim}100{\mu}m$ lengths were fabricated using a surface micromachining technique. Polycrystalline 3C-SiC micro resonators were actuated by piezoelectric element and their fundamental resonance was measured by a laser vibrometer in vacuum at temperature range of $25{\sim}200^{\circ}C$. The TCF(Temperature Coefficient of Frequency) of 60, 80 and 100 On long cantilever resonators were -9.79, -7.72 and -8.0 ppm/$^{\circ}C$. On the other hand, TCF of 60, 80 and $100{\mu}m$ long doubly clamped beam resonators were -15.74, -12.55 and -8.35 ppm/$^{\circ}C$. Therefore, polycrystalline 3C-SiC resonators are suitable with RF MEMS devices and bio/chemical sensor applications in harsh environments.

다결정 3C-SiC 마이크로 공진기의 특성 (Characteristics of polycrystalline 3C-SiC micro resonator)

  • 이태원;정귀상
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 하계학술대회 논문집 Vol.9
    • /
    • pp.69-70
    • /
    • 2008
  • Micro resonators have been actively investigated for bio/chemical sensors and RF M/NEMS devices. Among various materials, SiC is a very promising material for micro/nano resonators since the ratio of its Young's modulus, E, to mass density, $\rho$, is significantly higher than other semiconductor materials, such as, Si and GaAs. Polycrystalline 3C-SiC cantilever with different lengths were fabricated using a surface micromachining technique. Polycrystalline 3C-SiC micro resonators were actuated by piezoelectric element and its fundamental resonance was measured by a laser vibrometer in air and vacuum at room temperature, respectively. For the cantilever with $100{\mu}m$ length, $10{\mu}m$width and $1.3{\mu}m$ thickness, the fundamental frequency appeared at 147.2 kHz.

  • PDF

Substrate Temperature Dependence of Microcrystalline Silicon Thin Films by Combinatorial CVD Deposition

  • Kim, Yeonwon
    • 한국표면공학회지
    • /
    • 제48권3호
    • /
    • pp.126-130
    • /
    • 2015
  • A high-pressure depletion method using plasma chemical vapor deposition (CVD) is often used to deposit hydrogenated microcrystalline silicon (${\mu}c-Si:H$) films of a low defect density at a high deposition rate. To understand proper deposition conditions of ${\mu}c-Si:H$ films for a high-pressure depletion method, Si films were deposited in a combinatorial way using a multi-hollow discharge plasma CVD method. In this paper the substrate temperature dependence of ${\mu}c-Si:H$ film properties are demonstrated. The higher substrate temperature brings about the higher deposition rate, and the process window of device quality ${\mu}c-Si:H$ films becomes wider until $200^{\circ}C$. This is attributed to competitive reactions between Si etching by H atoms and Si deposition.

다층코팅을 이용한 C/C 복합재료의 내산화성 및 내마모성 증진 (Improvement of Oxidation Resistance and Erosion Resistance Properties of the C/C Composite with the Multilayer Coating)

  • 김옥희;이승윤;윤병일;박종욱
    • 한국세라믹학회지
    • /
    • 제32권9호
    • /
    • pp.1003-1008
    • /
    • 1995
  • CVD-Si3N4/CVD-SiC/pack-SiC/pyro-carbon/(3-D C/C composite) multilayer coating was performed to improve the oxdiation resistance and erosion resistance properteis of the 3-D carbon/carbon composite, and the plasma test was performed to measure the oxidation resistance and erosion resistance properties. The thicknesses of each film layer were about 10${\mu}{\textrm}{m}$ for pack-SiC, 5${\mu}{\textrm}{m}$ for CVD-SiC and 40${\mu}{\textrm}{m}$ for CVD-Si3N4. When the multilayer coated specimen was exposed to the plasma flame with temperature of 500$0^{\circ}C$ for 20 seconds, it showed the weight loss five times less than that of the only pyro-carbon coated specimen.

  • PDF

용탕단조한 AC4A $Al/Al_2O_3+SiC_p$ 하이브리드 금속복합재료의 미세조직과 기계적 성질 (Microstructure of Squeeze Cast AC4A $Al/Al_2O_3+SiC_p$ Hybrid Metal Matrix Composite)

  • 김민수;조경목;박익민
    • 한국주조공학회지
    • /
    • 제14권3호
    • /
    • pp.258-266
    • /
    • 1994
  • AC4A $Al/Al_2O_3+SiC_p$ hybrid composites were fabricated by the squeeze infiltration technique. Effect of applied pressure, volume fraction of reinforcement($Al_2O_3$ and SiC) and SiC particle size($4.5{\mu}m$, $6.5{\mu}m$ and $9.3{\mu}m$) on the solidification microstructure of the hybrid composites were examined. Mechanical properties were estimated preliminarly by fractographic observation, hardness measurement and wear test. Results show that the microstructure of the hybrid composites were quite satisfactory, namely revealing relatively uniform distribution of reinforcements and refined matrix. Some aggregation of SiC particle caused by particle pushing was observed especially in the hybrid composites containg in fine particle($4.5{\mu}m$). Refined matrix was attributed to applied pressure and increased nucleation sites with addition of reinforcements. Fractured facet also revealed finer for the hybrid composites possibly due to refined matrix. Hardness and wear resistance increased with volume fraction of reinforcements. For hybrid composites with $9.3{\mu}m$ SiC, hardness was somewhat lower and wear resistance higher than other composites.

  • PDF

Properties of Porous SiC Ceramics Prepared by Wood Template Method

  • Ha, Jung-Soo;Lim, Byong-Gu;Doh, Geum-Hyun;Kang, In-Aeh;Kim, Chang-Sam
    • 한국세라믹학회지
    • /
    • 제47권4호
    • /
    • pp.308-311
    • /
    • 2010
  • Porous SiC samples were prepared with three types of wood (poplar, pine, big cone pine) by simply embedding the wood charcoal in a powder mixture of Si and $SiO_2$ at 1600 and $1700^{\circ}C$. The basic engineering properties such as density, porosity, pore size and distribution, and strength were characterized. The samples showed full conversion to mostly $\beta$-SiC with good retention of the cellular structure of the original wood. More rigid SiC struts were developed for $1700^{\circ}C$. They showed similar bulk density ($0.5{\sim}0.6\;g/cm^3$) and porosity (81~84%) irrespective of the type of wood. The poplar sample showed three pore sizes (1, 8, $60\;{\mu}m$) with a main size of $60\;{\mu}m$. The pine sample showed a single pore size ($20\;{\mu}m$). The big cone pine sample showed two pore sizes (10, $80\;{\mu}m$) with a main size of $10\;{\mu}m$. The bend strength was 2.5 MPa for poplar, 5.7 MPa for pine, 2.8 MPa for big cone pine, indicating higher strength with pine.