• Title/Summary/Keyword: ${\kappa}-potent$

Search Result 97, Processing Time 0.03 seconds

Beta-carotene prevents the spermatogenic disorders induced by exogenous scrotal hyperthermia through modulations of oxidative stress, apoptosis, and androgen biosynthesis in mice

  • Yon, Jung-Min;Kim, Jae Seung;Lin, Chunmei;Park, Seul Gi;Gwon, Lee Wha;Lee, Jong-Geol;Baek, In-Jeoung;Nahm, Sang-Seop;Nam, Sang-Yoon
    • Korean Journal of Veterinary Research
    • /
    • v.59 no.2
    • /
    • pp.59-67
    • /
    • 2019
  • We investigated whether ${\beta}$-carotene (${\beta}-CA$) or ellagic acid (EA), originating from various fruits and vegetables, has a preventive effect against male infertility induced by exogenous scrotal hyperthermia. ICR adult mice were intraperitoneally treated with 10 mg/kg of ${\beta}-CA$ or EA daily for 13 days consecutively. During this time, mice were subjected to transient scrotal heat stress in a water bath at $43^{\circ}C$ for 20 min on day 7, and their testes and blood were obtained on day 14 for histopathologic and biochemical analyses. Heat stress induced significant testicular weight reduction, germ cell loss and degeneration, as well as abnormal localization of phospholipid hydroperoxide glutathione peroxidase (PHGPx) and manganese superoxide dismutase (MnSOD) in spermatogenic and Leydig cells. Heat stress also altered the levels of oxidative stress (lipid peroxidation, SOD activity, and PHGPx, MnSOD, and $HIF-1{\alpha}$ mRNAs), apoptosis (Bax, Bcl-xL, caspase 3, $NF-{\kappa}B$, and $TGF-{\beta}1$ mRNAs), and androgen biosynthesis (serological testosterone concentration and $3{\beta}$-hydroxysteroid dehydrogenase mRNA) in testes. These changes were all improved significantly by ${\beta}-CA$ treatment, but only slightly improved by EA treatment. These findings indicate that ${\beta}-CA$, through modulations of oxidative stress, apoptosis, and androgen biosynthesis, is a potent preventive agent against testicular injuries induced by scrotal hyperthermia.

Paeoniflorin treatment regulates TLR4/NF-κB signaling, reduces cerebral oxidative stress and improves white matter integrity in neonatal hypoxic brain injury

  • Yang, Fan;Li, Ya;Sheng, Xun;Liu, Yu
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.25 no.2
    • /
    • pp.97-109
    • /
    • 2021
  • Neonatal hypoxia/ischemia (H/I), injures white matter, results in neuronal loss, disturbs myelin formation, and neural network development. Neuroinflammation and oxidative stress have been reported in neonatal hypoxic brain injuries. We investigated whether Paeoniflorin treatment reduced H/I-induced inflammation and oxidative stress and improved white matter integrity in a neonatal rodent model. Seven-day old Sprague-Dawley pups were exposed to H/I. Paeoniflorin (6.25, 12.5, or 25 mg/kg body weight) was administered every day via oral gavage from postpartum day 3 (P3) to P14, and an hour before induction of H/I. Pups were sacrificed 24 h (P8) and 72 h (P10) following H/I. Paeoniflorin reduced the apoptosis of neurons and attenuated cerebral infarct volume. Elevated expression of cleaved caspase-3 and Bad were regulated. Paeoniflorin decreased oxidative stress by lowering levels of malondialdehyde and reactive oxygen species generation and while, and it enhanced glutathione content. Microglial activation and the TLR4/NF-κB signaling were significantly down-regulated. The degree of inflammatory mediators (interleukin 1β and tumor necrosis factor-α) were reduced. Paeoniflorin markedly prevented white matter injury via improving expression of myelin binding protein and increasing O1-positive olidgodendrocyte and O4-positive oligodendrocyte counts. The present investigation demonstrates the potent protective efficiency of paeoniflorin supplementation against H/I-induced brain injury by effectually preventing neuronal loss, microglial activation, and white matter injury via reducing oxidative stress and inflammatory pathways.

Anti-Inflammatory Effects of Abalone (Haliotis discus hannai) Viscera via Inhibition of ROS Production in LPS-Stimulated RAW 264.7 Cells

  • Shin, Tai-Sun;Choi, Kap Seong;Chun, Jiyeon;Kho, Kang-Hee;Son, Seon Ah;Shim, Sun-Yup
    • Microbiology and Biotechnology Letters
    • /
    • v.50 no.1
    • /
    • pp.22-30
    • /
    • 2022
  • Haliotis discus hannai called abalone, is the valuable marine mollusks and the by-products of abalone processing are viscera. Brownish abalone male viscera (AMV), which have not been reported as having anti-inflammatory effects, was extracted with acetone and fractionated by different six acetone/hexane ratios (0, 10, 20, 30, 40, and 100%) using a silica column via in vitro ABTS and DPPH radical and nitric oxide (NO) production assay-guided fractionation. Among the fractions, the acetone/hexane ratio 40%, A40 exhibited the most potent radical scavenging activities and inhibition of lipopolysaccharide (LPS)-induced NO production without cytotoxicity. A40 inhibited LPS-induced intracellular reactive oxygen species (ROS) production in a dose-dependent manner. Western blot analysis revealed that A40 down-regulated the activation of NF-κB, MAPK (ERK 1/2, p-38, and JNK), and inflammatory enzymes, inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX)-2. Moreover, this fraction inhibited the generation of pro-inflammatory cytokines such as interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α. These results suggested that AMV containing A40 with anti-inflammatory and anti-oxidantive effects, is the effective therapeutic and functional material for treating inflammatory disorders.

Novel GPR43 Agonists Exert an Anti-Inflammatory Effect in a Colitis Model

  • Park, Bi-Oh;Kang, Jong Soon;Paudel, Suresh;Park, Sung Goo;Park, Byoung Chul;Han, Sang-Bae;Kwak, Young-Shin;Kim, Jeong-Hoon;Kim, Sunhong
    • Biomolecules & Therapeutics
    • /
    • v.30 no.1
    • /
    • pp.48-54
    • /
    • 2022
  • GPR43 (also known as FFAR2), a metabolite-sensing G-protein-coupled receptor stimulated by short-chain fatty acid (SCFA) ligands is involved in innate immunity and metabolism. GPR43 couples with Gαi/o and Gαq/11 heterotrimeric proteins and is capable of decreasing cyclic AMP and inducing Ca2+ flux. The GPR43 receptor has additionally been shown to bind β-arrestin 2 and inhibit inflammatory pathways, such as NF-κB. However, GPR43 shares the same ligands as GPR41, including acetate, propionate, and butyrate, and determination of its precise functions in association with endogenous ligands, such as SCFAs alone, therefore remains a considerable challenge. In this study, we generated novel synthetic agonists that display allosteric modulatory effects on GPR43 and downregulate NF-κB activity. In particular, the potency of compound 187 was significantly superior to that of pre-existing compounds in vitro. However, in the colitis model in vivo, compound 110 induced more potent attenuation of inflammation. These novel allosteric agonists of GPR43 clearly display anti-inflammatory potential, supporting their clinical utility as therapeutic drugs.

6-Shogaol and 10-Shogaol Synergize Curcumin in Ameliorating Proinflammatory Mediators via the Modulation of TLR4/TRAF6/MAPK and NFκB Translocation

  • Xian Zhou;Ahmad Al-Khazaleh;Sualiha Afzal;Ming-Hui (Tim) Kao;Gerald Munch;Hans Wohlmuth;David Leach;Mitchell Low;Chun Guang Li
    • Biomolecules & Therapeutics
    • /
    • v.31 no.1
    • /
    • pp.27-39
    • /
    • 2023
  • Extensive research supported the therapeutic potential of curcumin, a naturally occurring compound, as a promising cytokine-suppressive anti-inflammatory drug. This study aimed to investigate the synergistic anti-inflammatory and anti-cytokine activities by combining 6-shogaol and 10-shogaol to curcumin, and associated mechanisms in modulating lipopolysaccharides and interferon-γ-induced proinflammatory signaling pathways. Our results showed that the combination of 6-shogaol-10-shogaolcurcumin synergistically reduced the production of nitric oxide, inducible nitric oxide synthase, tumor necrosis factor and interlukin-6 in lipopolysaccharides and interferon-γ-induced RAW 264.7 and THP-1 cells assessed by the combination index model. 6-shogaol-10-shogaol-curcumin also showed greater inhibition of cytokine profiling compared to that of 6-shogaol-10-shogaol or curcumin alone. The synergistic anti-inflammatory activity was associated with supressed NFκB translocation and downregulated TLR4-TRAF6-MAPK signaling pathway. In addition, SC also inhibited microRNA-155 expression which may be relevant to the inhibited NFκB translocation. Although 6-shogaol-10-shogaol-curcumin synergistically increased Nrf2 activity, the anti-inflammatory mechanism appeared to be independent from the induction of Nrf2. 6-shogaol-10-shogaol-curcumin provides a more potent therapeutic agent than curcumin alone in synergistically inhibiting lipopolysaccharides and interferon-γ induced proinflammatory mediators and cytokine array in macrophages. The action was mediated by the downregulation of TLR4/TRAF6/MAPK pathway and NFκB translocation.

Caffeine attenuates spermatogenic disorders in mice with induced chronic scrotal hyperthermia

  • Amir Raoofi;Omid Gholami;Hossein Mokhtari;Fatemeh Bagheri;Auob Rustamzadeh;Davood Nasiry;Alireza Ghaemi
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.51 no.1
    • /
    • pp.28-41
    • /
    • 2024
  • Objective: Chronic scrotal hyperthermia (SHT) can lead to serious disorders of the male reproductive system, with oxidative stress playing a key role in the onset of these dysfunctions. Thus, we evaluated the impact of caffeine, a potent antioxidant, on cellular and tissue disorders in mice with chronic SHT. Methods: In this experimental study, 56 adult male NMRI mice were allocated into seven equal groups. Apart from the non-treated control group, all were exposed to heat stress. Two groups, termed "preventive" and "curative," were orally administered caffeine. The preventive mice began receiving caffeine immediately prior to heat exposure, while for the curative group, a caffeine regimen was initiated 15 consecutive days following cessation of heat exposure. Each treated group was subdivided based on pairing with a positive control (Pre/ curative [Cur]+PC) or a vehicle (Pre/Cur+vehicle). Upon conclusion of the study, we assessed sperm characteristics, testosterone levels, stereological parameters, apoptosis, antioxidant and oxidant levels, and molecular markers. Results: Sperm parameters, testosterone levels, stereological parameters, biochemical factors (excluding malondialdehyde [MDA]), and c-kit gene expression were significantly elevated in the preventive and curative groups, especially the former, relative to the other groups. Conversely, expression levels of the heat shock protein 72 (HSP72) and nuclear factor kappa beta (NF-κβ) genes, MDA levels, and apoptotic cell density were markedly lower in both caffeine-treated groups relative to the other groups, with more pronounced differences observed in the preventive group. Conclusion: Overall, caffeine attenuated cellular and molecular abnormalities induced by heat stress in the testis, particularly in the mice treated under the preventive condition.

Bioactivity-Guided Fraction from Viscera of Abalone, Haliotis discus hannai Suppresses Cellular Basophils Activation and Anaphylaxis in Mice

  • Kap Seong Choi;Tai-Sun Shin;Ginnae Ahn;Shin Hye Kim;Jiyeon Chun;Mina Lee;Dae Heon Kim;Han-Gil Choi;Kyung-Dong Lee;Sun-Yup Shim
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.2
    • /
    • pp.379-386
    • /
    • 2024
  • Basophils and mast cells are specialized effector cells in allergic reactions. Haliotis discus hannai (abalone), is valuable seafood. Abalone male viscera, which has a brownish color and has not been previously reported to show anti-allergic activities, was extracted with acetone. Six different acetone/hexane fractions (0, 10, 20, 30, 40, and 100%) were obtained using a silica column via β-hexosaminidase release inhibitory activity-guided selection in phorbol myristate acetate and a calcium ionophore, A23187 (PMACI)-induced human basophils, KU812F cells. The 40% acetone/hexane fraction (A40) exhibited the strongest inhibition of PMACI-induced-β-hexosaminidase release. This fraction dose-dependently inhibited reactive oxygen species (ROS) production and calcium mobilization without cytotoxicity. Western blot analysis revealed that A40 down-regulated PMACI-induced MAPK (ERK 1/2, p-38, and JNK) phosphorylation, and the NF-κB translocation from the cytosol to membrane. Moreover, A40 inhibited PMACI-induced interleukin (IL)-1β, IL-6, and IL-8 production. Anti-allergic activities of A40 were confirmed based on inhibitory effects on IL-4 and tumor necrosis factor alpha (TNF-α) production in compound (com) 48/80-induced rat basophilic leukemia (RBL)-2H3 cells. A40 inhibited β-hexosaminidase release and cytokine production such as IL-4 and TNF-α produced by com 48/80-stimulated RBL-2H3 cells. Furthermore, it's fraction attenuated the IgE/DNP-induced passive cutaneous anaphylaxis (PCA) reaction in the ears of BALB/c mice. Our results suggest that abalone contains the active fraction, A40 is a potent therapeutic and functional material to treat allergic diseases.

The Efficacy of Added Montelukast in Persistent Asthmatics Who Were Not Completely Controlled on Inhaled Corticosteroids and Inhaled Long-acting β2-agonists (흡입 스테로이드와 지속성 베타2 항진제의 병용요법으로 완전히 조절되지 않는 천식 환자에서 추가 montelukast의 효과)

  • Choi, Jeong-Hee;Park, Hae-Sim;Lee, Kwan-Ho;Shim, Jae-Jeong;Uh, Soo-Taek;Lee, Sang-Pyo;Lee, Yong-Chul;Choi, Won-Il;Lee, Jae-Ho;Kim, Joo-In;Lee, Myung-Goo;Jung, Ki-Suck
    • Tuberculosis and Respiratory Diseases
    • /
    • v.63 no.4
    • /
    • pp.337-345
    • /
    • 2007
  • Backgrounds: Although glucocorticoids are one of the most potent anti-inflammatory agents, they have limited effect on cysteinyl leukotriene biosynthesis. In addition, the response to inhaled corticosteroids (ICS) and inhaled long-acting ${\beta}_2-agonists$ (LABA) combination therapy in moderate to severe persistent asthmatics varies. Additional therapy with leukotriene receptor antagonists (LTRA) in patients with moderate to severe asthma suboptimally controlled with ICS and LABA combination therapy would be complementary to asthma control. Methods: One hundred and ninety eight asthmatics entered a 2 month, open-label descriptive study. Patients suffering from persistent asthma and suboptimally controlled on a combination therapy of fluticasone/salmeterol or budesonide/formoterol were given montelukast 10 mg daily as an add-on therapy. The level of asthma control was assessed using the Asthma Control Questionnaire (ACQ) including $FEV_1%$ predicted at the baseline and after a 2-month treatment with montelukast. A global evaluation of the treatment was also made by the patients and physicians. Results: The mean ACQ score decreased significantly on montelukast ($11.5{\pm}5.4$ at baseline vs. $6.7{\pm}5.0$), with a significant improvement in all individual symptom scores (p<0.01). The $FEV_1%$ predicted values did not show any significant change. 59.9% of patients and 59.4% of physicians reported global improvement in their asthma (${\kappa}=0.85$). Conclusion: These results suggest that the addition of montelukast in patients with persistent asthma that is suboptimally contolled by combination therapy of ICS and LABA might confer complementary effects on asthma control.

Resolvin D5, a Lipid Mediator, Inhibits Production of Interleukin-6 and CCL5 Via the ERK-NF-κB Signaling Pathway in Lipopolysaccharide-Stimulated THP-1 Cells

  • Chun, Hyun-Woo;Lee, Jintak;Pham, Thu-Huyen;Lee, Jiyon;Yoon, Jae-Hwan;Lee, Jin;Oh, Deok-Kun;Oh, Jaewook;Yoon, Do-Young
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.1
    • /
    • pp.85-92
    • /
    • 2020
  • One of the omega-3 essential fatty acids, docosahexaenoic acid (DHA), is a significant constituent of the cell membrane and the precursor of several potent lipid mediators. These mediators are considered to be important in preventing or treating several diseases. Resolvin D5, an oxidized lipid mediator derived from DHA, has been known to exert anti-inflammatory effects. However, the detailed mechanism underlying these effects has not yet been elucidated in human monocytic THP-1 cells. In the present study, we investigated the effects of resolvin D5 on inflammation-related signaling pathways, including the extracellular signal-regulated kinase (ERK)-nuclear factor (NF)-κB signaling pathway. Resolvin D5 downregulated the production of interleukin (IL)-6 and chemokine (C-C motif) ligand 5 (CCL5). Additionally, these inhibitory effects were found to be modulated by mitogen-activated protein kinase (MAPK) and NF-κB in lipopolysaccharide (LPS)-treated THP-1 cells. Resolvin D5 inhibited the LPS-stimulated phosphorylation of ERK and translocation of p65 and p50 into the nucleus, resulting in the inhibition of IL-6 and CCL5 production. These results revealed that resolvin D5 exerts anti-inflammatory effects in LPS-treated THP-1 cells by regulating the phosphorylation of ERK and nuclear translocation of NF-κB.

Black ginseng-enriched Chong-Myung-Tang extracts improve spatial learning behavior in rats and elicit anti-inflammatory effects in vitro

  • Saba, Evelyn;Jeong, Da-Hye;Roh, Seong-Soo;Kim, Seung-Hyung;Kim, Sung-Dae;Kim, Hyun-Kyoung;Rhee, Man-Hee
    • Journal of Ginseng Research
    • /
    • v.41 no.2
    • /
    • pp.151-158
    • /
    • 2017
  • Background: Chong-Myung-Tang (CMT) extract is widely used in Korea as a traditional herbal tonic for increasing memory capacity in high-school students and also for numerous body ailments since centuries. The use of CMT to improve the learning capacity has been attributed to various plant constituents, especially black ginseng, in it. Therefore, in this study, we have first investigated whether black ginseng-enriched CMT extracts affected spatial learning using the Morris water maze (MWM) test. Their molecular mechanism of action underlying improvement of learning and memory was examined in vitro. Methods: We used two types of black ginseng-enriched CMT extracts, designated as CM-1 and CM-2, and evaluated their efficacy in the MWM test for spatial learning behavior and their anti-inflammatory effects in BV2 microglial cells. Results: Our results show that both black ginseng-enriched CMT extracts improved the learning behavior in scopolamine-induced impairment in the water maze test. Moreover, these extracts also inhibited nitric oxide production in BV2 cells, with significant suppression of expression of proinflammatory cytokines, especially inducible nitric oxide synthase, cyclooxygenase-2, and $interleukin-1{\beta}$. The protein expression of mitogen-activated protein kinase and nuclear $factor-{\kappa}B$ pathway factors was also diminished by black ginseng-enriched CMT extracts, indicating that it not only improves the memory impairment, but also acts a potent anti-inflammatory agent for neuroinflammatory diseases. Conclusion: Our research for the first time provides the scientific evidence that consumption of black ginseng-enriched CMT extract as a brain tonic improves memory impairment. Thus, our study results can be taken as a reference for future neurobehavioral studies.