• Title/Summary/Keyword: ${\gamma}-ray$

Search Result 1,793, Processing Time 0.027 seconds

Incidence of Active Tuberculosis within One Year after Tumor Necrosis Factor Inhibitor Treatment according to Latent Tuberculosis Infection Status in Patients with Inflammatory Bowel Disease

  • Kang, Jieun;Jeong, Dae Hyun;Han, Minkyu;Yang, Suk-Kyun;Byeon, Jeong-Sik;Ye, Byong Duk;Park, Sang Hyoung;Hwang, Sung Wook;Shim, Tae Sun;Jo, Kyung-Wook
    • Journal of Korean Medical Science
    • /
    • v.33 no.47
    • /
    • pp.292.1-292.10
    • /
    • 2018
  • Background: We investigated the incidence of active tuberculosis among patients with inflammatory bowel disease (IBD) treated with tumor necrosis factor (TNF) inhibitors, with or without latent tuberculosis infection (LTBI). Methods: The study was performed at a Korean tertiary referral center between January 2011 and June 2017. In total, 740 patients with IBD who underwent LTBI screening tests and were followed-up for ${\geq}1$ year after TNF inhibitor treatment initiation were enrolled. LTBI was detected on the basis of tuberculin skin test results, interferon-gamma release assay results, chest X-ray findings, and previous tuberculosis treatment history. The patients were classified into LTBI (n = 84) or non-LTBI (n = 656) group. The risk of developing tuberculosis in each group was assessed on the basis of standardized incidence ratio (SIR) and 95% confidence interval (CI) for active tuberculosis. Results: Mean patient age was 33.1 years, and patients with Crohn's disease were predominant (80.7%). Within 1 year after the initiation of TNF inhibitor treatment, 1 patient in the LTBI group (1/84; 1.2%) and 7 patients in the non-LTBI group (7/656; 1.1%) developed active tuberculosis. The overall 1-year incidence of tuberculosis among the patients was significantly higher than that among the general population (SIR, 14.0; 95% CI, 7.0-28.0), and SIR was not affected by LTBI status (LTBI group: 14.5, 95% CI, 2.0-102.6; non-LTBI group: 14.0, 95% CI, 6.7-29.4). Conclusion: Patients with IBD undergoing TNF inhibitor treatment showed a higher 1-year incidence of tuberculosis than the general population irrespective of LTBI status.

Water-Soluble Conjugated Polymer and Graphene Oxide Composite Used as an Efficient Hole-Transporting Layer for Organic Solar Cells (수용성 공액고분자/그래핀 옥사이드 복합체를 이용한 유기태양전지의 정공수송층에 대한 연구)

  • Kim, Kyu-Ri;Oh, Seung-Hwan;Kim, Hyun Bin;Jeun, Joon-Pyo;Kang, Phil-Huyn
    • Polymer(Korea)
    • /
    • v.38 no.1
    • /
    • pp.38-42
    • /
    • 2014
  • The poly[(9,9-bis((6'-(N,N,N-trimethylammonium)hexyl)-2,7-fluorene)-alt-(9,9-bis(2-(2-(2-methoxyethoxy)ethoxy)ethyl)-9-fluorene)) dibromide (WPF-6-oxy-F)] and graphene oxide (GO) was blended and irradiated with gamma ray under ambient condition. This WPF-6-oxy-F-GO composite was investigated as a hole-transporting layer (HTL) in organic solar cells (OSCs). Compared with the pristine GO, the sheet resistance ($R_{sheet}$) of irradiated WPF-6-oxy-F-GO was decreased about 2 orders of magnitude. The reason for the decrease of $R_{sheet}$ is the effect of efficient ${\pi}-{\pi}$ packing resulted from the formation of C-N bond between WPF6-oxy-F and GO. As a result, the efficiency of OSCs was dramatically enhanced ~ 6.10% by introducing irradiated WPF-6-oxy-F-GO as a HTL. WPF-6-oxy-F-GO is a sufficient candidate for HTL to facilitate the low-cost and high efficiency OSCs.

The Relative Effectiveness of Various Radiation Sources on the Resistivity Change in n-Type Silicon

  • Jung, Wun
    • Nuclear Engineering and Technology
    • /
    • v.1 no.2
    • /
    • pp.91-101
    • /
    • 1969
  • Resistivity changes of n-type float-zone silicon crystals with 6.4$\times$10$^{14}$ to 1.25$\times$10$^{17}$ phosphorus atoms/㎤ due to irradiation by (1) 1 MeV electrons, (2) two types of research reactors, and (3) $Co^{60}$ ${\gamma}$-ray sources were investigated. The results were analyzed on the basis of a simple exponential formula derived by Buehler. While the formula gave a fair fit in the low fluence range in most cases, the deviation was quite appreciable in the case of 1 MeV electron irradiation, and a linear change gave better fit in some cases. The large change in the carrier removal rate in electron-irradiated samples in the high fluence range was analyzed in detail in terms of the Fermi level cross-over of the defect levels. Based on the damage constants evaluated from the initial portion of data where the formula was applicable, the relative effectiveness of various radiation sources in causing the resistivity change in n-type silicon was compared. The TRIGA Mark II reactor neutrons, for example, were found to be about 40 times more effective than 1 MeV electrons. The dependence of the damage constant on the initial carrier concentration was also examined. The physical basis of the exponential law and the effect of the Fermi level cross-over of the defect levels on the resistivity change in the high fluence ranges are discussed.

  • PDF

Surface Dose Evaluation According to the Environment Around the Patient after Nuclear Medicine Examination (핵의학 검사 후 환자의 주위 환경에 따른 표면 선량 평가)

  • Lee, Young-Hee;Park, Jae-Yoon
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.7
    • /
    • pp.943-948
    • /
    • 2021
  • The purpose of this study was to investigate changes in surface dose due to increased scattering of gamma rays from patients injected with 99mTc and 18F, which are radioactive isotopes, in close contact with materials with high atomic number such as the walls of the stable room. Prepare 99mTc and 18F by injecting 20 and 10 mCi respectively into the NEMA phantom, and then measuring the surface dose for 60 minutes by positioning the phantom at a height of 1 m above the surface, at a distance of 0, 5 and 10 cm from the wall, and at the same location as the phantom facing the wall. Each experiment was repeated five times for reproducibility of the experiment and one way analysis of variability (ANOVA) was performed for significance testing and Tukey was used as a post-test. The study found that surface doses of 220.268, 287.121, 243.957, and 226.272 mGy were measured at 99mTc, respectively, in the case of empty space and in the case of 0, 5 and 10 cm, while those of 18F were measured at 637.111, 724.469, 657.107, and 640.365 mGy, respectively. In order to reduce changes in surface dose depending on the patient's location while waiting, it is necessary to keep the distance from the ground or the wall where the patient is closely adhered to, or install an air mattress, etc., to prevent the scattered lines as much as possible, considering the scattered lines due to the wall etc. in future setup of the patient waiting room and safety room, and in addition to the examination, the external skin width may be reduced.

A New Improved Soybean Variety, 'Josaengseori' by Mutation Breeding (돌연변이 육종에 의한 재래종 서리태 개량 신품종 콩 '조생서리')

  • Song, Hi Sup;Kim, Jin-Baek;Lee, Kyung Jun;Kim, Dong Sub;Kim, Sang Hoon;Lee, Sang Jae;Kang, Si-Yong
    • Korean Journal of Breeding Science
    • /
    • v.42 no.3
    • /
    • pp.222-225
    • /
    • 2010
  • 'Seoritae' is a very famous variety of black soybean for mixed cooking with rice in Korea. However, it has a couple of bad traits such as late flowering and maturity. To improve these characteristics, seeds of original 'Seoritae' were irradiated using a 250 Gy gamma ray in 1994. Some mutants were identified and finally a new soybean variety 'Josaengseori' was developed in 2005. This variety has a few distinguishable characteristics such as smaller grain size, early maturity and high yielding compared to the 'Seoritae'. The flowering period of 'Josaengseori' is 57 days after seeding (DAS), which is 10 days earlier than that of 'Seoritae' (67 DAS). The maturation period of 'Josaengseori' is 130 DAS, which is 34 days earlier than 'Seoritae' (164 DAS). And the total yield of the new variety with 179 kg/10a is 2.4 times higher than that of 'Seoritae' with 74 kg/10a. 100 grain weight of 'Josaengseori' is 32.8 g, which is 20% lower than that of 'Seoritae' with 40.1 g.

Monitoring of Artificial Radionuclides in Edible Mushrooms in Korea (식용 버섯류에서의 인공 방사능 농도 조사)

  • Cho, Han-Gil;Kim, Ji-eun;Lee, Sung-nam;Moon, Su-kyong;Park, Yong-Bae;Yoon, Mi-Hye
    • Journal of Food Hygiene and Safety
    • /
    • v.33 no.6
    • /
    • pp.488-494
    • /
    • 2018
  • To ensure food-safety of mushrooms from radioactive contamination, edible mushroom samples distributed in Gyeonggi province in Korea were collected according to species and country of origin. A total of 284 mushrooms, belonging to 10 species (Lentinula edodes, Pleurotus ostreatus, Pleurotus eryngii, Agaricus bisporus, Flammulina velutipes, Phellinus linteus, Inonotus Obliquus (Chaga), Auricularia auricula-judae, Ganoderma lucidum and Tricholoma matsutake) were subjected to radioactivity testing. The concentration of artificial radionuclides, 131I, 134Cs, and 137Cs, was analyzed using gamma-ray spectrometry. 131I and 134Cs were not detected more than MDA value from all samples. Among 204 domestic mushrooms, however, 137Cs were detected in 0.21~2.58 Bq/kg from six cases (3 Lentinula edodes, 1 Ganoderma lucidum and 2 Tricholoma matsutake), whereas 137Cs were detected in 0.21~53.79 Bq/kg from 38 cases (22 Inonotus Obliquus(Chaga), 14 Phellinus linteus, 1 Lentinula edodes and 1 Tricholoma matsutake) among 80 imported mushrooms. In addition, average concentration of 137Cs in 10 Chaga mushroom-processed products was more than twice as much as dried Chaga mushroom, and maximum concentration was 123.79 Bq/kg. Results suggest that radioactivity monitoring system for imported mushrooms and mushroom-processed products should be continuously intensified to secure food-safety in Korea.

Development of High-Sensitivity and Entry-Level Nuclide Analysis Module (고감도 보급형 핵종 분석 모듈 개발)

  • Oh, Seung-Jin;Lee, Joo-Hyun;Lee, Seung-Ho
    • Journal of IKEEE
    • /
    • v.26 no.3
    • /
    • pp.515-519
    • /
    • 2022
  • In this paper, we propose the development of a high-sensitivity entry-level nuclide analysis module. The proposed measurement sensor module consists of an electronic driving circuit for nuclide analysis resolution, prototype production with nuclide analysis function, and GUI development applied to prototypes. The electronic part driving circuit for nuclide analysis resolution is divided into nuclide analysis resolution process by the electronic part driving circuit block diagram, MCU circuit design used for radiation measurement, and PC program design for Spectrum acquisition. Prototyping with nuclide analysis function is made by adding a 128×128 pixel OLED display, three buttons for operation, a Li-ion battery, and a USB-C type port for charging the battery. The GUI development department applied to the prototype develops the screen composition such as the current time, elapsed measurement time, total count, and nuclide Spectrum. To evaluate the performance of the proposed measurement sensor module, an expert witness test was conducted. As a result of the test, it was confirmed that the calculated result by applying the resolution formula to the Spectrum (FWHM@662keV) obtained using the Cs-137 standard source in the nuclide analysis device had a resolution of 17.77%. Therefore, it was confirmed that the nuclide analysis resolution method proposed in this paper produces improved performance while being cheaper than the existing commercial nuclide analysis module.

Design of a Depth Encoding Detector using Light Guides with Different Reflector Patterns for Each Layer (각 층별 반사체 패턴이 서로 다른 광가이드를 사용한 반응 깊이 측정 검출기 설계)

  • Seung-Jae, Lee
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.1
    • /
    • pp.31-36
    • /
    • 2023
  • Among imaging and treatment devices for small animals, positron emission tomography(PET) causes a change in spatial resolution within a field of view. This is a phenomenon caused by using a small gantry and a thin and long scintillation pixel, and detectors that measure the interaction depth are being developed and researched to solve this problem. In this study, a detector that measures the interaction depth was designed using several scintillator blocks and light guides with different reflector patterns. The scintillator block composed of 4 × 4 arrays of 3 mm × 3 mm × 5 mm scintillation pixels formed four layers, and a light guide was inserted in each layer to configure the entire detector. In order to check whether the interaction depth was measured, a gamma ray interaction was generated at the center of all scintillation pixels to acquire data and then reconstructed into a flood image. The reflector patterns of the light guides inserted between the layers were all different, so the positions of the scintillation pixels for each layer were formed in different locations. It is considered that even spatial resolution can be achieved over all regions of the field of view if all positions of the scintillation pixels thus formed are separated and used for image reconstruction.

A Study on the Evaluation of Radiation Safety in Opened-Ceiling-Facilities for Radiography Testing (천장 개방형 RT 사용시설의 방사선 안전성 평가 연구)

  • Sung-Hoe, Heo;Won-Seok, Park;Seung-Uk, Heo;Byung-In, Min
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.6
    • /
    • pp.741-749
    • /
    • 2022
  • Radiography-Testing that verify the quality of welding structures without destruction are overwhelmingly used in industries, but many safety precautions are required as radiation is used. The workers for Radiography-Testing perform the inspection by moving the Iridium-192 radiation source embedded in the transport container of the gamma-ray irradiator within or outside the facility. The general facility is completely blocked about radiation from the outside with thick concrete, but if it is difficult for worker to handle object of inspection, facilities ceiling can be opened. A general facility may be constructed using a theoretical dose evaluation method because all exterior facilities are blocked, but if the ceiling is open, it is not appropriate to evaluate radiation safety with a simple theoretical calculation method due to the skyshine effect. Therefore, in this study, the radiation safety of the facility was evaluated in the actual field through an ion chamber survey-meter and an accumulated dose-meter called as OSLD, and the actual evaluation environment was modeled and evaluated using the Monte Carlo simulation code as FLUKA. According to the direction of the irradiation, the radiation dose at the facility boundary was difficult to meet the standards set by the regulatory authority, and radiation safety could be secured through additional methods. In addition, it was confirmed that the simulation results using the Iridium-192 source were valid evaluation with the actual measured results.

Dosimetric Study Using Patient-Specific Three-Dimensional-Printed Head Phantom with Polymer Gel in Radiation Therapy

  • Choi, Yona;Chun, Kook Jin;Kim, Eun San;Jang, Young Jae;Park, Ji-Ae;Kim, Kum Bae;Kim, Geun Hee;Choi, Sang Hyoun
    • Progress in Medical Physics
    • /
    • v.32 no.4
    • /
    • pp.99-106
    • /
    • 2021
  • Purpose: In this study, we aimed to manufacture a patient-specific gel phantom combining three-dimensional (3D) printing and polymer gel and evaluate the radiation dose and dose profile using gel dosimetry. Methods: The patient-specific head phantom was manufactured based on the patient's computed tomography (CT) scan data to create an anatomically replicated phantom; this was then produced using a ColorJet 3D printer. A 3D polymer gel dosimeter called RTgel-100 is contained inside the 3D printing head phantom, and irradiation was performed using a 6 MV LINAC (Varian Clinac) X-ray beam, a linear accelerator for treatment. The irradiated phantom was scanned using magnetic resonance imaging (Siemens) with a magnetic field of 3 Tesla (3T) of the Korea Institute of Nuclear Medicine, and then compared the irradiated head phantom with the dose calculated by the patient's treatment planning system (TPS). Results: The comparison between the Hounsfield unit (HU) values of the CT image of the patient and those of the phantom revealed that they were almost similar. The electron density value of the patient's bone and brain was 996±167 HU and 58±15 HU, respectively, and that of the head phantom bone and brain material was 986±25 HU and 45±17 HU, respectively. The comparison of the data of TPS and 3D gel revealed that the difference in gamma index was 2%/2 mm and the passing rate was within 95%. Conclusions: 3D printing allows us to manufacture variable density phantoms for patient-specific dosimetric quality assurance (DQA), develop a customized body phantom of the patient in the future, and perform a patient-specific dosimetry with film, ion chamber, gel, and so on.