• Title/Summary/Keyword: ${\gamma}-ray$

Search Result 1,841, Processing Time 0.026 seconds

Crystal Structure of Thiamin Tetrahydrofurfuryl Disulfide

  • Shin, Whan-Chul;Kim, Young-Chang
    • Bulletin of the Korean Chemical Society
    • /
    • v.7 no.5
    • /
    • pp.331-334
    • /
    • 1986
  • The crystal structure of thiamin tetrahydrofurfuryl disulfide, one of the ring-opened derivatives of thiamin, has been determined by the X-ray diffraction methods. The crystal is monoclinic with cell dimensions of a = 8.704 (1), b = 11.207 (2), c = 21.260 (3) ${\AA}$ and ${\beta}$ = 92.44 (2)$^{circ}$, space group P2$_{1}$/c and Z = 4. The structure was solved by direct methods and refined to R = 0.076 for 1252 observed reflections measured on a diffractometer. The molecule assumes a folded conformation in which the pyrimidine and the tetrahydrofurfuryl rings are on the same side of the ethylenic plane. The pyrimidinyl, N-formyl and ethylenic planes are mutually perpendicular to each other and the N(3)-C(4) bond retains a single bond character. The structure is stabilized by an intramolecular N(4'${\alpha})-H{\cdots}O(2{\alpha}$) hydrogen bond. The molecules are connected via N(4'${\alpha}$)-H{\cdots}(N3')$ and O(5${\gamma})-H{\cdots}(N1')$ hydrogen bonds, forming a two-dimensional hydrogen-bonding network. The tetrahydrofurfuryl ring is dynamically disordered. The overall conformation as well as the packing mode is very similar to that of thiamin propyl disulfide.

Research on the optimization method for PGNAA system design based on Signal-to-Noise Ratio evaluation

  • Li, JiaTong;Jia, WenBao;Hei, DaQian;Yao, Zeen;Cheng, Can
    • Nuclear Engineering and Technology
    • /
    • v.54 no.6
    • /
    • pp.2221-2229
    • /
    • 2022
  • In this research, for improving the measurement performance of Prompt Gamma-ray Neutron Activation Analysis (PGNAA) set-up, a new optimization method for set-up design was proposed and investigated. At first, the calculation method for Signal-to-Noise Ratio (SNR) was proposed. Since the SNR could be calculated and quantified accurately, the SNR was chosen as the evaluation parameter in the new optimization method. For discussing the feasibility of the SNR optimization method, two kinds of PGNAA set-ups were designed in the MCNP code, based on the SNR optimization method and the previous signal optimization method, respectively. Meanwhile, the single element spectra analysis method was proposed, and the analysis effect of single element spectra as well as element sensitivity were used for comparing the measurement performance. Since the simulation results showed the better measurement performance of set-up designed by SNR optimization method, the experimental set-ups were built for the further testing, finally demonstrating the feasibility of the SNR optimization method for PGNAA setup design.

Performance testing of a FastScan whole body counter using an artificial neural network

  • Cho, Moonhyung;Weon, Yuho;Jung, Taekmin
    • Nuclear Engineering and Technology
    • /
    • v.54 no.8
    • /
    • pp.3043-3050
    • /
    • 2022
  • In Korea, all nuclear power plants (NPPs) participate in annual performance tests including in vivo measurements using the FastScan, a stand type whole body counter (WBC), manufactured by Canberra. In 2018, all Korean NPPs satisfied the testing criterion, the root mean square error (RMSE) ≤ 0.25, for the whole body configuration, but three NPPs which participated in an additional lung configuration test in the fission and activation product category did not meet the criterion. Due to the low resolution of the FastScan NaI(Tl) detectors, the conventional peak analysis (PA) method of the FastScan did not show sufficient performance to meet the criterion in the presence of interfering radioisotopes (RIs), 134Cs and 137Cs. In this study, we developed an artificial neural network (ANN) to improve the performance of the FastScan in the lung configuration. All of the RMSE values derived by the ANN satisfied the criterion, even though the photopeaks of 134Cs and 137Cs interfered with those of the analytes or the analyte photopeaks were located in a low-energy region below 300 keV. Since the ANN performed better than the PA method, it would be expected to be a promising approach to improve the accuracy and precision of in vivo FastScan measurement for the lung configuration.

Soil Radioactivity in Urban Parks of Incheon (인천지역 근린공원의 토양 방사능 농도)

  • Jun-Su, Jang;Sang-Bok, Lee;Ga-Eun, Baek;Hee-Cheol, Shin;Gyeong-Jae, Lee;Do-Hwa, Lee;Sungchul, Kim
    • Journal of radiological science and technology
    • /
    • v.46 no.1
    • /
    • pp.37-42
    • /
    • 2023
  • Most of research on environmental radioactivity is conducted in areas near nuclear power plants, so basic data about the distribution of environmental radioactivity in soil in other areas are insufficient. Therefore, in this study, divide into four categories by the land development characteristics of Incheon and the purpose of development, and confirm the stability of the Incheon through soil sample collection and gamma-ray analysis based on 40K, 137Cs and 226Ra (214Pb, 214Bi). The spectrum obtained by measuring for 80,000 seconds by using the HPGe detector was analyzed by Genie 2000 program. Soil radioactivity concentrations in urban parks of Incheon area are generally within a safe range compared to the results of the Nuclear safety and security commission. However, as 137Cs was detected in one park, which will require continuous monitoring.

Physicochemical Property of Borosilicate Glass for Rare Earth Waste From the PyroGreen Process

  • Young Hwan Hwang;Mi-Hyun Lee;Cheon-Woo Kim
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.21 no.2
    • /
    • pp.271-281
    • /
    • 2023
  • A study was conducted on the vitrification of the rare earth oxide waste generated from the PyroGreen process. The target rare earth waste consisted of eight elements: Nd, Ce, La, Pr, Sm, Y, Gd, and Eu. The waste loading of the rare earth waste in the developed borosilicate glass system was 20wt%. The fabricated glass, processed at 1,200℃, exhibited uniform and homogeneous surface without any crystallization and precipitation. The viscosity and electrical conductivity of the melted glass at 1,200℃ were 7.2 poise and 1.1 S·cm-1, respectively, that were suitable for the operation of the vitrification facility. The calculated leaching index of Cs, Co, and Sr were 10.4, 10.6, and 9.8, respectively. The evaluated Product Consistency Test (PCT) normalized release of the glass indicated that the glass satisfied the requirements for the disposal acceptance criteria. Furthermore, the pristine, 90 days water immersed, 30 thermal cycled, and 10 MGy gamma ray irradiated glasses exhibited good compressive strength. The results indicated that the fabricated glass containing rare earth waste from the PyroGreen process was acceptable for the disposal in the repository, in terms of chemical durability and mechanical strength.

Feasibility study on fiber-optic inorganic scintillator array sensor system for multi-dimensional scanning of radioactive waste

  • Jae Hyung Park;Siwon Song;Seunghyeon Kim;Jinhong Kim;Seunghyun Cho;Cheol Ho Pyeon;Bongsoo Lee
    • Nuclear Engineering and Technology
    • /
    • v.55 no.9
    • /
    • pp.3206-3212
    • /
    • 2023
  • We developed a miniaturized multi-dimensional radiation sensor system consisting of an inorganic scintillator array and plastic optical fibers. This system can be applied to remotely obtain the radioactivity distribution and identify the radionuclides in radioactive waste by utilizing a scanning method. Variation in scintillation light was measured in two-dimensional regions of interest and then converted into radioactivity distribution images. Outliers present in the images were removed by using a digital filter to make the hot spot location more accurate and cubic interpolation was applied to make the images smoother and clearer. Next, gamma-ray spectroscopy was performed to identify the radionuclides, and three-dimensional volume scanning was also performed to effectively find the hot spot using the proposed array sensor.

Investigation of 180W separation by transient single withdrawal cascade using Salp Swarm optimization algorithm

  • Morteza Imani;Mahdi Aghaie
    • Nuclear Engineering and Technology
    • /
    • v.55 no.4
    • /
    • pp.1225-1232
    • /
    • 2023
  • The 180W is the lightest isotope of Tungsten with small abundance ratio. It is slightly radioactive (α decay), with an extremely long half-life. Its separation is possible by non-conventional single withdrawal cascades. The 180W is used in radioisotopes production and study of metals through gamma-ray spectroscopy. In this paper, single withdrawal cascade model is developed to evaluate multicomponent separation in non-conventional transient cascades, and available experimental results are used for validation. Numerical studies for separation of 180W in a transient single withdrawal cascade are performed. Parameters affecting the separation and equilibrium time of cascade such as number of stages, cascade arrangements, feed location and flow rate for a fixed number of gas centrifuges (GC) are investigated. The Salp Swarm Algorithm (SSA) as a bio-inspired optimization algorithm is applied as a novel method to minimize the feed consumption to obtain desired concentration in the collection tank. Examining different cascade arrangements, it is observed in arrangements with more stages, the separation is further efficient. Based on the obtained results, with increasing feed flow rate, for fixed product concentration, the cascade equilibrium time decreases. Also, it is shown while the feed location is the farthest stage from the collection tank, the separation and cascade equilibrium time are well-organized. Finally, using SSA optimal parameters of the cascade is calculated, and optimal arrangement to produce 5 gr of 180W with 90% concentration in the tank, is proposed.

Radioactivity Calculation Considering Kori Unit 1 Operation History for the Defected Baffle Former Bolts (고리1호기 가동이력을 고려한 손상 배플포머볼트 방사화 계산)

  • Young Jae Maeng;Hyun Chul Lee;Myeong Ho Lee;Seong Sik Hwang;Seung Jin Oh;Yun Suk Jang
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.19 no.1
    • /
    • pp.20-26
    • /
    • 2023
  • The defected baffle former bolts of Kori unit 1 were withdrawn to analyze the cause of damage and gamma-ray measurement is being scheduled. Prior to that, in order to calculate the specific radioactivity value of the baffle former bolt, a radioactivity calculation method considering the actual operation history of the nuclear power plant is introduced and the calculation results are shown. In particular, the radioactivity calculation method considering the operation history is obtained by defining the monthly contribution factor from the actual monthly operation history. As a result, the results considering operation history are 16-28% lower than the general radioactivity calculation results. These results can contribute to establish a reasonable but economical strategy when planning nuclear power plant decommissioning.

Synthesis and structure analysis of the bis(dicyclohexylammonium) chromate dihydrate complex, [(C6H11)2NH2]2[CrO4]·2H2O

  • Kim, Chong-Hyeak;Moon, Hyoung-Sil;Lee, Sueg-Geun
    • Analytical Science and Technology
    • /
    • v.20 no.5
    • /
    • pp.448-451
    • /
    • 2007
  • A new bis(dicyclohexylammonium) chromate dihydrate complex, $[(C_6H_{11})_2NH_2]_2[CrO_4]{\cdot}2H_2O$, (I), has been synthesized and its structure analyzed by FT-IR, EDS, elemental analysis, ICP-AES, and single crystal X-ray diffraction methods. The Cr(VI) complex (I) is tetragonal system, I${\bar{4}}$2d space group with a = 12.5196(1), b = 12.5196(1), c = $17.3796(3){\AA}$, a = ${\beta}$ = ${\gamma}$ = $90^{\circ}$, V = $2724.09(6){\AA}^3$, Z = 4. The crystal structure of complex (I) consists of tetrahedral chromate $[CrO_4]^{2-}$ anion, two organic dicyclohexylammonium $[(C_6H_{11})_2NH_2]^+$ cations and two lattice water molecules. The chromate anion and protonated dicyclohexylammonium cation is mainly constructed through the ionic bond. The cyclohexylammonium rings of the dicyclohexylammonium cation take the chair form and vertical configuration with each other. The N-H${\cdot}$O and O-H${\cdot}$O hydrogen bond networks between the $N_{dicyclohexylammonium}$, $O_{water}$ and $O_{chromate}$ atom lead to self-assembled molecular conformation and stabilize the crystal structure.

Structural characterization of ladder-type cadmium(II) citrate complex, (C3H12N2)[{Cd(H2O)(C6H5O7)}2]·6H2O

  • Kim, Chong-Hyeak;Lee, Sueg-Geun
    • Analytical Science and Technology
    • /
    • v.20 no.4
    • /
    • pp.355-360
    • /
    • 2007
  • The title complex, $(C_3H_{12}N_2)[\{Cd(H_2O)(C_6H_5O_7)\}_2]{\cdot}6H_2O$, I, has been prepared and its structure characterized by FT-IR, EDS, elemental analysis, ICP-AES, and X-ray single crystallography. It is triclinic system, $P{\bar{1}}$ space group with a = 10.236(2), b = 11.318(2), c = $13.198(2){\AA}$, ${\alpha}=77.95(1)^{\circ}$, ${\beta}=68.10(1)^{\circ}$, ${\gamma}=78.12(1)^{\circ}$, V = $1373.5(3){\AA}^3$, Z = 2. Complex I has constituted by protonated 1,3-diaminopropane cations, citrate coordinated cadmium(II) anions, and free water molecules. The central cadmium atoms have a capped trigonal prism geometry by seven coordination with six oxygen atoms of three different citrate ligands and one water molecule. Citrate ligands are bridged to three different cadmium atoms. Each cadmium atom is linked by carboxylate and hydroxyl groups of citrate ligand to construct an one-dimensional ladder-type assembly structure. The polymeric crystal structure is stabilized by three-dimensional networks of the intermolecular O-H${\cdots}$O and N-H${\cdots}$O hydrogen-bonding interaction.