• Title/Summary/Keyword: ${\gamma}-nuclide$ analysis

Search Result 26, Processing Time 0.025 seconds

In-Situ Gamma Spectrometry Research Analysis and Radiation Efficiency Sensitivity Evaluation (감마핵종 In-Situ 측정 연구 동향 분석 및 방사능 측정 효율 민감도 평가)

  • Hyun Jun Na;Hyeok Jae Kim;Seong Yeon Lee;Min Woo Kwak;Kwang Pyo Kim
    • Journal of Radiation Industry
    • /
    • v.17 no.1
    • /
    • pp.1-9
    • /
    • 2023
  • Since a large amount of radioactive waste is expected to be generated due to permanent shutdown of many nuclear power plants, it is necessary to prepare efficient management methods for radioactive waste. Therefore, there is a need for a based study to apply the In-Situ gamma spectrometry, which can simplify the measurement procedure. The purpose of this study is to analyze research cases of In-Situ gamma spectrometry and to analyze the sensitivity of measurement according to influencing factors on In-Situ gamma spectrometry. Research cases of five institutions, including the CERN and the Imperial College Reactor Centre (ICRC), were selected as the institutions to be investigated. Research on the In-Situ gamma spectrometry was conducted on the satisfaction of the acceptance criteria for radioactive waste and the analysis of residual radioactivity in the site. In-Situ Objective Counting System (ISOCS) was used as a major measuring device. Sampling and computer code were used to verify the analysis results. For evaluation of measuring sensitivity according to influencing factors on In-Situ gamma spectrometry, the thickness of the measurement target, the distance between the detector and the target, the angle of the collimator, and the contamination location were performed using ISOCS's Geometry Composer. In every case, based on 122 keV, the efficiency decreased as the energy increased in the high energy region, and the efficiency decreased as the energy decreased in the low energy region. As the target thickness increased, the efficiency decreased, and as the distance between target and detector increased, the efficiency decreased. As the distance between contamination and detector increased, the efficiency decreased, and as the angle of the collimator increased, the measurement efficiency increased. However, when simulating the measurement situation using Geometry Composer, the background is not considered, and the probability of incident in the background increases as the angle increases, so further research needs to be conducted in consideration of these. This study can be utilized when applying the In-Situ gamma spectrometry of radioactive waste clearance in the future.

Radioactivity Analysis for Reliability Assessment in the Environmental Samples (환경 시료 중 신뢰도 검증을 위한 방사능 분석)

  • Kang, Tae-Woo;Hong, Kyung-Ae
    • Korean Journal of Environmental Agriculture
    • /
    • v.26 no.2
    • /
    • pp.186-191
    • /
    • 2007
  • The objective of this research was to assess the reliability of data and to improve nuclear analytical techniques concerning the Domestic Radioactivity Intercomparison program for environmental radioactivity monitoring of Jeju from 1998 to 2006. Gross beta for filter papers and water samples was determined, and gamma nuclides for natural and artificial nuclides in soil and water samples were analyzed. The gross beta activity of all samples except for the water samples of 1998 and 1999 showed a good agreement within the confidence intervals. In gamma nuclides, $^{40}K$ and $^{137}Cs$ of soil samples and most nuclides in the water samples, with the exception of several nuclides, were evaluated to be reliable. Based on these results, it is considered that a reliable method for the analysis and monitoring of environmental radioactivity were established, which may play an important role in case of emergency radiation accident.

A Study on Performance Characteristics of Neutron Detector to Measure the Burnup Profile of Spent Fuel in NPP (원전 내 사용후핵연료 연소도 측정을 위한 중성자 검출기의 성능 평가 연구)

  • Hye Min Park;Tae Young Kim;In Ho Lee;Dae Heon Jang;Yang Soo Song;Un Jang Lee;Cheol Min Ham
    • Journal of Radiation Industry
    • /
    • v.17 no.3
    • /
    • pp.293-297
    • /
    • 2023
  • The burnup profile of spent fuel should be determined accurately for the safety storage of spent fuel. In this study, a neutron detection system was developed as a part of basic research to analyze the burnup profile of spent fuel, and a performance was evaluated using a radiation source. The prototype of the neutron detection system was based on a 3He proportional chamber. The 3He proportional chamber is often used for neutron measurement and analysis because of its high neutron detection efficiency and simplicity for gamma ray rejection. For quantitative evaluation, tests were conducted using calibrated 252Cf and 137Cs sources. In the performance evaluation, a field applicability was verified by analyzing the detection characteristics according to the nuclide.

A New Method of Determination for the Trace Ruthenium in High Purity Palladium by Neutron Activation Analysis (방사화 분석에 의한 고순도 팔라듐 금속중의 미량 루테늄에 관한 새로운 정량법)

  • Lee, Chul;Yim, Yung-Chang;Uhm, Kyung-Ja;Chung, Koo-Soon
    • Journal of the Korean Chemical Society
    • /
    • v.15 no.4
    • /
    • pp.191-197
    • /
    • 1971
  • Ruthenium content in highly purified palladium metal (99.9%) was determined by counting $^{105}Rh$ nuclide which was produced by $^{104}Ru(n,{\gamma};{\beta}^-)^{105}Rh$ nuclear reaction. Palladium sample and ruthenium standard were irradiated by neutron with the Pneumatic Transfer System of TRIGA MARK II reactor. Palladium and ruthenium were dissolved by treating with aqua-regia and by fusing with sodium peroxide flux respectively. $^{105}Rh$ was separated through anion and cation exchange resin columns. The ruthenium content was determined by comparing the $^{105}Rh$ activities, obtained from the palladium sample, with that from pure ruthenium standard. The detection limit of ruthenium by the present method is about 1 ppm of ruthenium in 10 mg of palladium, which is approximately 40 times more sensitive than that of the conventional radioactivation method which employs $^{102}Ru(n,{\gamma})^{103}Ru$ nuclear reaction.

  • PDF

A Study on the Improvement of Gamma Ray Energy Spectrum Resolution through Electrical Noise Reduction of High Purity Ge Detector (고순도 Ge 검출기의 전기적 노이즈 감소를 통한 감마선 에너지 스펙트럼의 분해능 향상에 관한 연구)

  • Lee, Samyol
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.7
    • /
    • pp.849-856
    • /
    • 2020
  • In the gamma-ray energy spectrum study, nuclide analysis through energy analysis is very important. High-purity Ge detectors, which are commonly used for gamma-ray energy measurements, are commonly used because of their high energy resolution and relatively high detection efficiency. However, in order to maintain a high energy resolution, the semiconductor detector has a problem in that it is difficult to maintain the original performance if the noise generated from the surrounding environment is not effectively blocked, and the effect of the expensive device is not achieved. Therefore, in this study, ground loop isolator (NEXT-001HDGL) was used to remove the electrical noise generated from the detector. In order to test the effect of improving energy resolution, HPGe detection device newly installed in the proton accelerator KOMAC was used. In the case of gamma-ray energy 2614 keV, the energy resolution was improved from (0.16 ± 0.02) % to (0.11 ± 0.01) %, and in the case of gamma-ray energy 662 keV of 137Cs isotope, the energy resolution was improved from (0.72 ± 0.07) % to (0.27 ± 0.03) %. This result is considered to be very useful for the gamma ray spectrum study using the HPGe detection equipment of KOMAC(Korea Multi-Purpose Accelerator Complex).

Development of an Efficiency Calibration Model Optimization Method for Improving In-Situ Gamma-Ray Measurement for Non-Standard NORM Residues (비정형 공정부산물 In-Situ 감마선 측정 정확도 향상을 위한 효율교정 모델 최적화 방법 개발)

  • WooCheol Choi;Tae-Hoon Jeon;Jung-Ho Song;KwangPyo Kim
    • Journal of Radiation Industry
    • /
    • v.17 no.4
    • /
    • pp.471-479
    • /
    • 2023
  • In In-situ radioactivity measurement techniques, efficiency calibration models use predefined models to simulate a sample's geometry and radioactivity distribution. However, simplified efficiency calibration models lead to uncertainties in the efficiency curves, which in turn affect the radioactivity concentration results. This study aims to develop an efficiency calibration optimization methodology to improve the accuracy of in-situ gamma radiation measurements for byproducts from industrial facilities. To accomplish the objective, a drive mechanism for rotational measurement of an byproduct simulator and a sample was constructed. Using ISOCS, an efficiency calibration model of the designed object was generated. Then, the sensitivity analysis of the efficiency calibration model was performed, and the efficiency curve of the efficiency calibration model was optimized using the sensitivity analysis results. Finally, the radiation concentration of the simulated subject was estimated, compared, and evaluated with the designed certification value. For the sensitivity assessment of the influencing factors of the efficiency calibration model, the ISOCS Uncertainty Estimator was used for the horizontal and vertical size and density of the measured object. The standard deviation of the measurement efficiency as a function of the longitudinal size and density of the efficiency calibration model decreased with increasing energy region. When using the optimized efficiency calibration model, the measurement efficiency using IUE was improved compared to the measurement efficiency using ISOCS at the energy of 228Ac (911 keV) for the nuclide under analysis. Using the ISOCS efficiency calibration method, the difference between the measured radiation concentration and the design value for each simulated subject measurement direction was 4.1% (1% to 10%) on average. The difference between the estimated radioactivity concentration and the design value was 3.6% (1~8%) on average when using the ISOCS IUE efficiency calibration method, which was closer to the design value than the efficiency calibration method using ISOCS. In other words, the estimated radioactivity concentration using the optimized efficiency curve was similar to the designed radioactivity concentration. The results of this study can be utilized as the main basis for the development of regulatory technologies for the treatment and disposal of waste generated during the operation, maintenance, and facility replacement of domestic byproduct generation facilities.

Analysis of Radioactivity Concentrations in Cigarette Smoke and Tobacco Risk Assessment (담배연기와 담뱃잎 내 함유된 방사능 농도분석 및 위해도 평가)

  • Lee, Se-Ryeong;Lee, Sang-Bok;Kim, Jeong-Yoon;Kim, Ji-Min;Bang, Yei-jin;Lee, Doo-Seok;Jo, Hyung-Joon;Kim, Sungchul
    • Journal of radiological science and technology
    • /
    • v.44 no.5
    • /
    • pp.489-494
    • /
    • 2021
  • In this study, radioactivity quantitative analysis was performed on radon contained in cigarette, and the effective dose was calculated using the result value to determine the amount of exposure caused by smoking. A total of 5 types of cigarettes were sampled. Cigarette smoke was collected by using activated carbon, and tobacco were measured by homogenizing for quantitative analysis. For each sample, Bi-214 and Pb-214 were subjected to gamma nuclide analysis to observe the uranium-based radioactive material contained in cigarette, and a measurement time of 30,000 seconds was set for the sample based on the results of previous studies. As a result of measuring the radioactivity of tobacco, a maximum of 0.715 Bq/kg was derived, and in the case of cigarette smoke measured using activated carbon, a maximum of 3.652 Bq/kg was derived. Using this measurement, the average effective dose to the lungs is 0.938 mSv/y, and it was found that there is a possibility of receiving exposure up to 1.099 mSv/y depending on the type of tobacco. It was found that the exposure dose due to cigarette occupies a large proportion of the annual effective dose limit for the general public. Therefore, more diverse studies on radioactive substances in cigarette are needed, and measures to monitor and reduce the incidental exposure to radon should be established.

Solution to Decrease Spatial Dose Rate in Laboratory of Nuclear Medicine through System Improvement (시스템 개선을 통한 핵의학 검사실의 공간 선량률 감소방안)

  • Moon, Jae-Seung;Shin, Min-Yong;Ahn, Seong-Cheol;Yoo, Mun-Gon;Kim, Su-Geun
    • Quality Improvement in Health Care
    • /
    • v.20 no.1
    • /
    • pp.60-73
    • /
    • 2014
  • Objectives: This study aims at decreasing spatial dose rate through work improvement whilst spatial dose rate is the cause of increasing personal exposure dose which occurs in the process of handling radioisotope. Methods: From February 2013 until July 2013, divided into "before" and "after" the improvement, spatial dose rate in laboratory of nuclear medicine was measured in gamma image room, PET/CT-1 image room, and PET/CT-2 image room as its locations. The measurement time was 08:00, 12:00 and 17:00, and SPSS 21.0 USA was opted for its statistical analysis. Result: The spatial dose rate at distribution worktable, injection table, the entrance to the distribution room, and radioisotope storage box, which had showed high spatial dose rate, decreased by more than 43.7% a monthly average. The distribution worktable, that had showed the highest spatial dose rate in PET/CT-1 image room, dropped the rate to 42.3% as of July. The injection table and distribution worktable in the PET/CT-2 image room also showed the decline of spatial dose rate to 89% and 64.4%, respectively. Conclusion: By improving distribution process and introducing proper radiation shielding material, we were able to drop the spatial dose rate substantially at distribution worktable, injection table, and nuclide storage box. However, taking into account of steadily increasing amount of radioisotope used, strengthening radiation related regulations, and safe utilization of radioisotope, the process of system improvement needs to be maintained through continuous monitoring.

Assessment of the Radiological Inventory for the Reactor at Kori NPP Using In-Situ Measurement Technology (In-Situ 측정법을 이용한 고리 원자로 방사선원항 평가)

  • Jeong, Hyun Chul;Jeong, Sung Yeop
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.12 no.2
    • /
    • pp.171-178
    • /
    • 2014
  • After the expiration of operating license of a plant, all infrastructures within the plant must be safely dismantled to the point that it no longer requires measures for radiation protection. Despite the fact that Kori 1 and Wolsong 1 are close to the expiration of their operating license, sufficient technologies for radiological characterization, decontamination and dismantling is still under development. The purpose of this study is to develop one of methods for radiological inventory assessment on measuring object by using direct measure of large component with In-Situ measurement technique. Radiological inventory was assessed by analyzing nuclide using portable gamma spectroscopy without dismantling reactor head, and the result of direct measurement was supplemented by performing indirect measurement. Radiochemical analysis were performed on surface contamination samples as well. During the study, radiological inventory of reactor vessel calculated expanding the result. Based on the result and the radioactivity variation of each radionuclides time frame for decommissioning can be decided. Thus, it is expected that during the decommissioning of plants, the result of this study will contribute to the reduction of radiation exposure to workers.

Fabrication and Evaluation of CdS/ZnS Quantum Dot Based Plastic Scintillator (CdS/ZnS 양자점 기반 플라스틱 섬광체 제작 및 성능평가)

  • Min, Su Jung;Kang, Ha Ra;Lee, Byung Chae;Seo, Bum Kyung;Cheong, Jae Hak;Roh, Changhyun;Hong, Sang Bum
    • Korean Chemical Engineering Research
    • /
    • v.59 no.3
    • /
    • pp.450-454
    • /
    • 2021
  • Currently, gamma nuclide analysis is mainly used using inorganic scintillators or semiconductor detectors. These detectors have high resolution but there are less economical, limited in size, and low process ability than plastic scintillators. Therefore, quantum dot-based plastic scintillator was developed using the advantages of the quantum dot nanomaterial and the conventional plastic scintillator. In this study, efficient plastic scintillator was fabricated by adding CdS/ZnS based on the most widely used Cd-based nanomaterial in a polystyrene matrix. In addition, the performance of the commercial plastic scintillator was compared and it was analyzed through radiological measurement experiments. The detection efficiency of fabricated plastic scintillator was higher than commercial plastic scintillator, EJ-200. It is believed that this fabricated plastic scintillator can be used as a radioactivity analyzer in the medical and nuclear facility fields.