• Title/Summary/Keyword: ${\gamma}$- PGA

Search Result 70, Processing Time 0.036 seconds

The Coagulation Characteristics of Wastewater Using Poly-γ-glutamic Acid (Poly-γ-glutamic acid(PGA)를 이용한 폐수의 응집특성)

  • Kwon, Kwi-bock;Kim, Dong-ha;Kang, Seon-Hong;Sung, Moon-Hee;Park, Chung
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.19 no.3
    • /
    • pp.357-362
    • /
    • 2005
  • Poly-${\gamma}$-glutamic acid (${\gamma}-PGA$), which is extracted from fermented soybeans, is a high molecular weight, adhesive, and negatively charged(anionic) polymer. Recently, ${\gamma}-PGA$ has gained attention due to its potential as polymer. The objectives of this study were to examine the applicability of ${\gamma}-PGA$ as a coagulant and/or a coagulant aid, to evaluate the efficiency of ${\gamma}-PGA$ for the removal of Organic and Ammonium substance in wastewater treatment. The effect of coagulation was evaluated for the removal of SS and organic matter using poly aluminum chloride(PACI) as well as newly developed ${\gamma}-PGA$. The maximum COD removal rate of 63% and the SS of 78% were occurred at the dosage of 50mg/L ${\gamma}-PGA$ only. The most effective removal for particulate and organic matter was occured when both PACI and ${\gamma}-PGA$ were applied at the rate of 20:1(10mg/L PACI and 0.5mg/L ${\gamma}-PGA$). When mixed with PACI, only small portion of ${\gamma}-PGA$ was enough to improve removal efficiencies of organic and particulate matter in wastewater. This result showed the positive potential of ${\gamma}-PGA$ as a new coagulant materials for wastewater treatment.

Effect of γ-PGA (Poly-γ-Glutamic Acid) Supplement on Calcium Absorption and Bone Metabolism in Rats (γ-PGA(Poly-γ-glutamic acid) 보충이 흰쥐의 칼슘 흡수율 및 골대사에 미치는 영향)

  • Lee, Min-Sook;Kang, Jung-Il;Kim, Hyun-Su
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.35 no.3
    • /
    • pp.255-261
    • /
    • 2006
  • This study was Conducted to investigate the effect of ${\gamma}-PGA\;({\gamma}-poly\;glutamic\;acid)$ on Ca absorption and bone metabolism in rats. Weaned 4-week old male rats were fed Ca-deficient diets for 3 weeks after the adjustment period. Rats were divided into 6 groups and were fed experimental diets for four weeks. Experimental groups were basal (Ca deficient), control (Ca diet: Ca 0.45%), CP1(Ca 0.45%+casein phosphopeptide 1%), PG1(Ca 0.45%+gamma poly glutamic acid 1%), CPG (Ca 0.45%+casein phosphopeptide 1%+gamma poly glutamic acid 1%) and PG3(Ca 0.45%+gamma poly glutamic acid 3%). Though daily Ca intake and food intake of experimental groups showed no significant difference that of control group. The values of fecal Ca excretion and urinary Ca excretion in groups fed ${\gamma}-PGA$ were significantly lower than that in tile control group. The values of Ca absorption in groups fed ${\gamma}-PGA$ were significantly higher than that in the control group. The levels of femur Ca in ${\gamma}-PGA$ supplemented group were significantly increased compared to the control group. Also, breaking force of femur in ${\gamma}-PGA$ supplemented group showed about 40% increase compared to the control group. These results show that ${\gamma}-PGA$ supplement could be helpful to increase Ca absorption as well as to intensify the femur strength and to increase the Ca content of femur in rats.

Prevention Effect of Poly-gamma-glutamic Acid on Porcine Ligament Tissue Damage Induced by Gamma Irradiation (Poly-gamma-glutamic acid의 방사선 조사에 의한 인대 조직 손상 보호 효과)

  • Kim, Jeongsoo;Sung, Nak-Yun;Park, Jong-Heum;Kim, Jaekyung;Song, Beom-Seok;Lee, Ju-Woon;Lee, Kwang-Won;Kwon, Jung-Kee;Kim, Tae-Woon;Kim, Jae-Hun
    • Journal of Radiation Industry
    • /
    • v.6 no.2
    • /
    • pp.165-169
    • /
    • 2012
  • This study was conducted to determine the prevention effect of poly-gamma-glutamic acid (${\gamma}-PGA$) on tissue damage induced by gamma irradiation for development of xenograft. Porcine tendons were treated at various doses of ${\gamma}-PGA$ (0.1, 0.5, 1 and 5%) and then gamma-irradiated (30 kGy). Prevention effects on tissue damage were measured as the result of tensile strength, hydroxyproline contents and viscosity of ${\gamma}-PGA$. Tensile strength was remarkably decrease in gamma-irradiated porcine ligament, but increased by ${\gamma}-PGA$ treated one. Among the ${\gamma}-PGA$ treatment doses, 1% treated group showed the highest values of tensile strength compared to non-treated group. Hydroxyproline contents was significantly increased by gamma irradiation, but decreased by the ${\gamma}-PGA$ treatment. Particularly, 1 and 5% ${\gamma}-PGA$ treated group were exhibited lower values of hydroxyproline contents than other group. In the result of viscosity, gamma-irradiated ${\gamma}-PGA$ (1%) was remarkably increased. Base on the results, it demonstrated that gamma irradiation induces severe alteration of mechanical property and collagen contents on porcine ligament, but ${\gamma}-PGA$ can effectively prevent these tissue damage.

Physicochemical Properties of Poly-γ-glutamic Acid Produced by a Novel Bacillus subtilis HA Isolated from Cheonggukjang

  • Seo, Ji-Hyun;Kim, Chan-Shick;Lee, Sam-Pin
    • Preventive Nutrition and Food Science
    • /
    • v.13 no.4
    • /
    • pp.354-361
    • /
    • 2008
  • A novel bacterium isolated from Cheonggukjang was identified as a glutamate-dependent Bacillus subtilis HA with 98.3% similarity to Bacillus subtilis Z99104. Optimization of poly-$\gamma$-glutamic acid ($\gamma$-PGA) production by modulating fermentation factors including carbon sources, nitrogen sources, inorganic salts and fermentation time was investigated. Optimum culture broth for $\gamma$-PGA production consisted of 3% glutamate, 3% glucose and various salts, resulting in the PGA production of 22.5 g/L by shaking culture for 72 hr at $37^{\circ}C$. Average molecular weight of $\gamma$-PGA was determined to be 1,220 kDa through MALLS analysis. The $\gamma$-PGA solution showed a typical pseudoplastic flow behavior, and a great decrease in consistency below pH 6.0 regardless of the same molecular weight of $\gamma$-PGA. The molecular weights of isolated $\gamma$-PGA were drastically decreased by heat treatment in various acidic conditions, resulting in different hydrolysis of $\gamma$-PGA. The consistency of $\gamma$-PGA solution was greatly decreased with increase heating time in acidic conditions.

Distribution of poly-${\gamma}$-glutamate (${\gamma}$-PGA) producers in Korean fermented foods, Cheongkukjang, Doenjang, and Kochujang

  • Kang, Seong-Eun;Rhee, Joo-Hyung;Park, Chung;Sung, Moon-Hee;Lee, In-Hyung
    • Food Science and Biotechnology
    • /
    • v.14 no.5
    • /
    • pp.704-708
    • /
    • 2005
  • Poly-y-glutamate (${\gamma}$-PGA) has great potential as a biodegradable polymer in a broad range of industrial fields such as food, cosmetics, medicine and water treatment. In order to isolate ${\gamma}$-PGA producers that are suitable for specific industrial applications, 653 Bacillus-like strains were isolated from 439 varieties of three Korean fermented foods, Cheongkukjang, Doenjang, and Kochujang, which were collected from different regions across Korea. A very high level of ${\gamma}$-PGA production was demonstrated in 4.7%, 1.8%, and 3.0% of the Bacillus-like strains isolated from Cheongkukjang, Doenjang, and Kochujang samples, respectively, which produced a viscous substance to such extent that it overflowed to the lid of the plate on the glutamate-dependent ${\gamma}$-PGA production plates. On glutamate-independent ${\gamma}$-PGA production plates, 5.1%, 5.9%, and 6.1% of Bacillus-like strains isolated from Cheongkukjang, Doenjang, and Kochujang samples, respectively, showed high production. The maximum ${\gamma}$-PGA production yields were 32.5 g/L and 5 g/L, depending on the purification methods in the glutamate-dependent media, with the higher yield resulting from a simple precipitation of ${\gamma}$-PGA by either methanol or ethanol and dialysis. The viscous substance produced by each strain showed different morphological characteristics, suggesting that isolated ${\gamma}$-PGA producers could produce various types of ${\gamma}$-PGA.

Effects of Ultra High Molecular Weight Poly-${\gamma}$-glutamic Acid from Bacillus subtilis (chungkookjang) on Corneal Wound Healing

  • Bae, Sun-Ryang;Park, Chung;Choi, Jae-Chul;Poo, Ha-Ryoung;Kim, Chul-Joong;Sung, Moon-Hee
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.4
    • /
    • pp.803-808
    • /
    • 2010
  • Poly-${\gamma}$-glutamic acid (${\gamma}$-PGA) is a natural edible polypeptide in which glutamate is polymerized via ${\gamma}$-amide linkages. First, we assessed the eye irritancy potential of ${\gamma}$-PGA in rabbits. Additionally, we studied the effects of ${\gamma}$-PGA on corneal wound healing, due to the anti-inflammatory properties and water retaining abilities of ${\gamma}$-PGA. In this study, the effects of ${\gamma}$-PGA on corneal wound healing after an alkali burn were evaluated. Thirty eyes wounded by alkali burning in 30 white rabbits were divided into three groups: group A was treated with 0.1% 5,000 kDa ${\gamma}$-PGA for 2 days; group B was treated with 0.1% hyaluronic acid; and group C was not treated, as a control. The area of corneal epithelial defect was examined at 12, 24, 30, 36, 42, and 48 h after corneal alkali wounding to determine initial wound healing. We found that ${\gamma}$-PGA promoted corneal wound healing, compared with controls, and showed similar effects to hyaluronic acid. These results indicate that ${\gamma}$-PGA stimulates corneal wound healing by an anti-inflammatory effect and enhancing cell migration and cell proliferation. ${\gamma}$-PGA is a promising biomaterial that may be a substitute for hyaluronic acid in corneal wound healing treatment.

Bio-Derived Poly(${\gamma}$-Glutamic Acid) Nanogels as Controlled Anticancer Drug Delivery Carriers

  • Bae, Hee Ho;Cho, Mi Young;Hong, Ji Hyeon;Poo, Haryoung;Sung, Moon-Hee;Lim, Yong Taik
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.12
    • /
    • pp.1782-1789
    • /
    • 2012
  • We have developed a novel type of polymer nanogel loaded with anticancer drug based on bio-derived poly(${\gamma}$-glutamic acid) (${\gamma}$-PGA). ${\gamma}$-PGA is a highly anionic polymer that is synthesized naturally by microbial species, most prominently in various bacilli, and has been shown to have excellent biocompatibility. Thiolated ${\gamma}$-PGA was synthesized by covalent coupling between the carboxyl groups of ${\gamma}$-PGA and the primary amine group of cysteamine. Doxorubicin (Dox)-loaded ${\gamma}$-PGA nanogels were fabricated using the following steps: (1) an ionic nanocomplex was formed between thiolated ${\gamma}$-PGA as the negative charge component, and Dox as the positive charge component; (2) addition of poly(ethylene glycol) (PEG) induced hydrogen-bond interactions between thiol groups of thiolated ${\gamma}$-PGA and hydroxyl groups of PEG, resulting in the nanocomplex; and (3) disulfide crosslinked ${\gamma}$-PGA nanogels were fabricated by ultrasonication. The average size and surface charge of Dox-loaded disulfide cross-linked ${\gamma}$-PGA nanogels in aqueous solution were $136.3{\pm}37.6$ nm and $-32.5{\pm}5.3$ mV, respectively. The loading amount of Dox was approximately 38.7 ${\mu}g$ per mg of ${\gamma}$-PGA nanogel. The Dox-loaded disulfide cross-linked ${\gamma}$-PGA nanogels showed controlled drug release behavior in the presence of reducing agents, glutathione (GSH) (1-10 mM). Through fluorescence microscopy and FACS, the cellular uptake of ${\gamma}$-PGA nanogels into breast cancer cells (MCF-7) was analyzed. The cytotoxic effect was evaluated using the MTT assay and was determined to be dependent on both the concentration and treatment time of ${\gamma}$-PGA nanogels. The bio-derived ${\gamma}$-PGA nanogels are expected to be a well-designed delivery carrier for controlled drug delivery applications.

Effects of PGA-LM on CD4+CD25+foxp3+ Treg Cell Activation in Isolated CD4+ T Cells in NC/Nga Mice (NC/Nga 생쥐에서 분리한 T 세포에서 foxp3+ 세포 활성화에 대한 PGA-LM의 효과)

  • Jang, Soon-Nam;Kim, Kum-Lan;Kang, Sang-Mo
    • Microbiology and Biotechnology Letters
    • /
    • v.37 no.2
    • /
    • pp.160-169
    • /
    • 2009
  • Poly-$\gamma$-glutamic acid ($\gamma$-PGA) was mixed natural flora of Bacillus subtilis, contaminated from cooked soybeans. Also, it was performed to find out the antiallergic activity by using NC/Nga mice, in vitro. The $\gamma$-PGA (PGA-HM : PGA-high molecular weight), Molecular weight 300 kDa, was decomposed and made PGA-LM (PGA-low molecular weight) which has molecular weight below 30 kDa by sonication. Therefore, it was same result between PGA-HM and PGA-LM, and reported PGA-LM as basic result. We found that PGA-LM contains antiallergic efficacy that inhibit B cells and Th2 cells activation from isolated CD4+T cells in NC/Nga atopic dermatitis model mice, and not show a cytotoxicity in the hFCs. To investigate the effects of these PGA-LM in vitro, isolation of splenic B cell and CD4+ T cells in atopic dermatitis mice were used. To elucidate the role of PGA-LM in anti-CD40+ interleukin-4 (IL-4)-mediated B-cell activation, showed that the capacity of B cells to expression IL-$1\beta$, IL-6, and TNF-$\alpha$ mRNA down-regulated, and IL-10 mRNA up-regulation by PGA-LM treatment, but it had no effect on TGF-$\beta$ expression. In addition to CD4+IFN-$\gamma$+ and CD4+CD25+foxp3+, the functions of PGA-LM in the development of the CD4+CD25+foxp3+ and CD4+IFN-$\gamma$+cells, the phenotype and functions of PGA-LM induced CD4+CD25+foxp3+, and CD4+IFN-$\gamma$+cells in CD4+T cells. These results suggested that PGA-LM could change cytokine production and generate CD4+CD25+foxp3+ Tregs in NC/Nga mice, and may be effective for immunotherapy in patients with AD.

Solution Properties of ${\gamma}$-Polyglutamic Acid Produced by Alkalophilic Alcaligenes sp. (호 알칼리성 Alcaligenes sp.가 생산하는 ${\gamma}$-Polyglutamic Acid의 용액 특성)

  • 이신영;강태수김갑수
    • KSBB Journal
    • /
    • v.10 no.4
    • /
    • pp.386-392
    • /
    • 1995
  • The high viscous ${\gamma}$-polyglutamic acid(${\gamma}$-PGA) from alkalophilic Alcaligenes sp. was purified and its solution property was investigated. The intrinsic viscosities for Na+ form and H+ form of ${\gamma}$-PGA were 31.1 and 0.38d$\ell$/g, respectively. The viscosity of H+-PGA was not influenced by pH or salts while that of Na+-PGA was influenced. The intrinsic viscosity of Na+-PGA solution decreased remarkably at the alkaline or acidic pH and showed the sharp decrease when salts were added. ${\gamma}$-PGA exhibited the property of the polyelectrolyte showing the .sharp decrease of intrinsic viscosity by the addition of NaCl, and intrinsic viscosity of dilute solution with the low concentration of NaCl was exponentially dependent on temperature and its temperature dependency increased with increasing NaCl concentration. The chain stiffness, coil overlap parameter and critical concentration of Na+-PGA were 0.08, 5.25 and 0.07g/d$\ell$, respectively.

  • PDF

Isolation of Bacillus subtilis GS-2 Producing γ-PGA from Ghungkukjang Bean Paste and Identification of γ-PGA (청국장으로부터 분리한 Poly(γ-glutamic acid)를 생산하는 균주 Bacillus subtilis GS-2의 분리 및 γ-PGA의 확인)

  • Bang, Byung-Ho;Jeong, Eun-Ja;Rhee, Moon-Soo;Kim, Yong-Min;Yi, Dong-Heui
    • Journal of Applied Biological Chemistry
    • /
    • v.54 no.1
    • /
    • pp.1-6
    • /
    • 2011
  • ${\gamma}$-PGA(poly-${\gamma}$-glutamic acid) is an unusual anionic polypeptide that is made of D- and L-glutamic acid units connected by amide linkages between ${\alpha}$-amino and ${\gamma}$-carboxylic acid groups. ${\gamma}$-PGA has been isolated from many kinds of organisms. Many Bacillus strains produce ${\gamma}$-PGA as a capsular material of an extracellular viscous material. It is safe for eating as a viscosity element of fermented soybean products such as Chungkookjang and Natto. It is biodegradable, edible and nontoxic toward humans and the environment and its molecular weight varies from ten thousand to several hundred thousand depending on the kinds of strains used. Therefore, potential applications of ${\gamma}$-PGA and its derivatives have been of interest in the past few years in a broad range of industrial fields such as food, cosmetics, medicine, water-treatment, etc. In this study, a bacterium, Bacillus subtilis GS-2 isolated from the Korean traditional seasoning food, Chungkookjang could produce a large amount of ${\gamma}$-PGA with high productivity and had a simple nutrient requirement. Based on carbon utilization pattern and partial 16S rRNA sequence analysis, the GS-2 strain was identified as B. subtilis. The determination of purified ${\gamma}$-PGA was confirmed with thin layer chromatography (TLC), high performance liquid chromatography (HPLC), fourier transform infrared (FT-IR) spectra, and $^1H$-nuclear magnetic resonance ($^1H$-NMR) spectroscopy.