• Title/Summary/Keyword: ${\beta}-SiC$ 분말

Search Result 64, Processing Time 0.021 seconds

Phase Formation and Physical Properties of SiAlON Ceramics Fabricated by Gas-Pressure Reactive Sintering (가스압 반응소결로 제조된 SiAlON 세라믹스의 상형성과 물리적 특성)

  • Lee, Soyul;Choi, Jae-Hyeong;Han, Yoonsoo;Lee, Sung-Min;Kim, Seongwon
    • Journal of Powder Materials
    • /
    • v.24 no.6
    • /
    • pp.431-436
    • /
    • 2017
  • SiAlON-based ceramics are some of the most typical oxynitride ceramic materials, which can be used as cutting tools for heat-resistant super-alloys (HRSA). SiAlON can be fabricated by using gas-pressure reactive sintering from the raw materials, nitrides and oxides such as $Si_3N_4$, AlN, $Al_2O_3$, and $Yb_2O_3$. In this study, we fabricate $Yb_{m/3}Si_{12-(m+n)}Al_{m+n}O_nN_{16-n}$ (m=0.3, n=1.9, 2.3, 2.7) ceramics by using gas-pressure sintering at different sintering temperatures. Then, the densification behavior, phase formation, microstructure, and hardness of the sintered specimens are characterized. We obtain a fully densified specimen with ${\beta}$-SiAlON after gas-pressure sintering at $1820^{\circ}C$ for 90 min. under 10 atm $N_2$ pressure. These SiAlON ceramic materials exhibited hardness values of ~92.9 HRA. The potential of these SiAlON ceramics for cutting tool application is also discussed.

Isotropic Compression Behavior of Lawsonite Under High-pressure Conditions (로소나이트(Lawsonite)의 압력에 따른 등방성 압축거동 연구)

  • Im, Junhyuck;Lee, Yongjae
    • Economic and Environmental Geology
    • /
    • v.49 no.1
    • /
    • pp.23-30
    • /
    • 2016
  • Powder samples of natural lawsonite (Ca-lawsonite, $CaAl_2Si_2O_7(OH)_2{\cdot}H_2O$) was studied structurally up to 8 GPa at room temperature using monochromatic synchrotron X-ray powder diffraction and a diamond anvil cell (DAC) with a methanol : ethanol : water (16 : 3 : 1 by volume) mixture solution as a penetrating pressure transmitting medium (PTM). Upon pressure increase, lawsonite does not show any apparent pressure induced expansion (PIE) or phase transition. Pressure-volume data were fitted to a second-order Birch-Murnaghan equation of state using a fixed pressure derivative of 4 leading to a bulk modulus ($B_0$) of 146(6) GPa. This compression is further characterized to be isotropic with calculated linear compressibilities of ${\beta}^a=0.0022GPa^{-1}$, ${\beta}^b=0.0024GPa^{-1}$, and ${\beta}^c=0.0020GPa^{-1}$.

The Effect of Stacking Fault on Thermoelectric Property for n-type SiC Semiconductor (N형 SiC 반도체의 열전 물성에 미치는 적층 결함의 영향)

  • Pai, Chul-Hoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.3
    • /
    • pp.13-19
    • /
    • 2021
  • This study examined the effects of stacking faults on the thermoelectric properties for n-type SiC semiconductors. Porous SiC semiconductors with 30~42 % porosity were fabricated by the heat treatment of pressed ��-SiC powder compacts at 1600~2100 ℃ for 20~120 min in an N2 atmosphere. XRD was performed to examine the stacking faults, lattice strain, and precise lattice parameters of the specimens. The porosity and surface area were analyzed, and SEM, TEM, and HRTEM were carried out to examine the microstructure. The electrical conductivity and the Seebeck coefficient were measured at 550~900 ℃ in an Ar atmosphere. The electrical conductivity increased with increasing heat treatment temperature and time, which might be due to an increase in carrier concentration and improvement in grain-to-grain connectivity. The Seebeck coefficients were negative due to nitrogen behaving as a donor, and their absolute values also increased with increasing heat treatment temperature and time. This might be due to a decrease in stacking fault density, i.e., a decrease in stacking fault density accompanied by grain growth and crystallite growth must have increased the phonon mean free path, enhancing the phonon-drag effect, leading to a larger Seebeck coefficient.

Characteristics of Sn-doped β-Ga2O3 single crystals grown by EFG method (EFG 법으로 성장한 β-Ga2O3 단결정의 Sn 도핑 특성 연구)

  • Tae-Wan Je;Su-Bin Park;Hui-Yeon Jang;Su-Min Choi;Mi-Seon Park;Yeon-Suk Jang;Won-Jae Lee;Yun-Gon Moon;Jin-Ki Kang;Yun-Ji Shin;Si-Yong Bae
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.33 no.2
    • /
    • pp.83-90
    • /
    • 2023
  • The β-Ga2O3 has the most thermodynamically stable phase, a wide band gap of 4.8~4.9 eV and a high dielectric breakdown voltage of 8MV/cm. Due to such excellent electrical characteristics, this material as a power device material has been attracted much attention. Furthermore, the β-Ga2O3 has easy liquid phase growth method unlike materials such as SiC and GaN. However, since the grown pure β-Ga2O3 single crystal requires the intentionally controlled doping due to a low conductivity to be applied to a power device, the research on doping in β-Ga2O3 single crystal is definitely important. In this study, various source powders of un-doped, Sn 0.05 mol%, Sn 0.1 mol%, Sn 1.5 mol%, Sn 2 mol%, Sn 3 mol%-doped Ga2O3 were prepared by adding different mole ratios of SnO2 powder to Ga2O3 powder, and β-Ga2O3 single crystals were grown by using an edge-defined Film-fed Growth (EFG) method. The crystal direction, crystal quality, optical, and electrical properties of the grown β-Ga2O3 single crystal were analyzed according to the Sn dopant content, and the property variation of β-Ga2O3 single crystal according to the Sn doping were extensively investigated.