• 제목/요약/키워드: ${\beta}$-xylanase

검색결과 125건 처리시간 0.025초

Comparison of Alpha-Factor Preprosequence and a Classical Mammalian Signal Peptide for Secretion of Recombinant Xylanase xynB from Yeast Pichia pastoris

  • He, Zuyong;Huang, Yuankai;Qin, Yufeng;Liu, Zhiguo;Mo, Delin;Cong, Peiqing;Chen, Yaosheng
    • Journal of Microbiology and Biotechnology
    • /
    • 제22권4호
    • /
    • pp.479-483
    • /
    • 2012
  • The secretory efficiency of recombinant xylanase xynB from yeast Pichia pastoris between the ${\alpha}$-factor preprosequence and a classical mammalian signal peptide derived from bovine ${\beta}$-casein was compared. The results showed that although the bovine ${\beta}$-casein signal peptide could direct high-level secretion of recombinant xylanase, it was relatively less efficient than the ${\alpha}$-factor preprosequence. In contrast, the bovine ${\beta}$-casein signal peptide caused remarkably more recombinant xylanase trapped intracellularly. Real-time RT-PCR analysis indicated that the difference in the secretory level between the two signal sequences was not due to the difference in the transcriptional efficiency.

Endo-1,4-β-xylanase B from Aspergillus cf. niger BCC14405 Isolated in Thailand: Purification, Characterization and Gene Isolation

  • Krisana, Asano;Rutchadaporng, Sriprang;Jarupan, Gobsuk;Lily, Eurwilaichitr;Sutipa, Tanapongpipat;Kanyawim, Kirtikara
    • BMB Reports
    • /
    • 제38권1호
    • /
    • pp.17-23
    • /
    • 2005
  • During the screening of xylanolytic enzymes from locally isolated fungi, one strain BCC14405, exhibited high enzyme activity with thermostability. This fugal strain was identified as Aspergillus cf. niger based on its morphological characteristics and internal transcribed spacer (ITS) sequences. An enzyme with xylanolytic activity from BCC14405 was later purified and characterized. It was found to have a molecular mass of ca. 21 kDa, an optimal pH of 5.0, and an optimal temperature of $55^{\circ}C$. When tested using xylan from birchwood, it showed $K_m$ and $V_{max}$ values of 8.9 mg/ml and 11,100 U/mg, respectively. The enzyme was inhibited by $CuSO_4$, EDTA, and by $FeSO_4$. The homology of the 20-residue N-terminal protein sequence showed that the enzyme was an endo-1,4-$\beta$-xylanase. The full-length gene encoding endo-1,4-$\beta$-xylanase from BCC14405 was obtained by PCR amplification of its cDNA. The gene contained an open reading frame of 678 bp, encoding a 225 amino acid protein, which was identical to the endo-1,4-$\^{a}$-xylanase B previously identified in A. niger.

Trichoderma koningii ATCC 26113에서 분리된 xylanase II의 작용양상과 활성부위 (Mode of action anf active site of xylanase II from Trichoderma koningii ATCC 26113)

  • 김현주;강사욱;하영칠
    • 미생물학회지
    • /
    • 제32권4호
    • /
    • pp.306-314
    • /
    • 1994
  • Xylan과 관련 다당류 (xylotriose, xylotetraose, arabinoxylotriose)에 대한 Trichoderma koningii ATCC 26113에서 분리된 xylanase II의 작용양상은 xylanase II가 endo-enzyme이고 transxylosidation의 활성을 가지고 있다고 보여진다. Xylanase II에 의해 형성된 반응산물을 $^1HNMR$ 분광법으로 분석한 결과는 본 효소에 의해 얻어진 xylooligosaccharides의 가수분해산물은 모두가 ${\beta}$-1,4-xylosidic linkage만을 가지고 있는 것으로 판명되었다. 본 효소를 iodoacetamide로 화학적으로 변형시켰을 때 효소 mole당 cysteine 잔기가 두 개가 활성에 필요한 것으로 보여졌으며, N-bromosuccinimide 로 처리하였을 때는 활성부위에 tryptophan 잔기가 여덟 개 존재하는 것으로 판명되었다.

  • PDF

Paenibacillus donghaensis JH8에서 세포외 Xylanase의 특성 (Characterization of Extracellular Xylanase from Paenibacillus donghaensis JH8)

  • 임채성;오용식;노동현
    • 미생물학회지
    • /
    • 제47권1호
    • /
    • pp.81-86
    • /
    • 2011
  • Xylanase는 선형복합다당인 ${\beta}$-1,4-xylan을 xylose로 가수분해하는 효소의 한 종류이며, 종이제조공정에 응용되고 미래에 바이오 연료의 생산에 사용 될 수 있다. 동해 심층 퇴적물로부터 신종세균으로 보고된 Paenibacillus donghaensis JH8은 배지중의 xylan을 분해한다고 알려져 있으며, 여기에서는 이 효소의 특성을 조사하였다. 효소는 0.1% xylan 존재에서 최고로 유도되었으며, xylanase의 생산은 초기 대수성장기에 효소를 생산하기 시작하여, 정지기에서 약 55 miliunit에 도달하였다. 세포외성 xylanase의 최적온도와 pH는 각각 $40^{\circ}C$와 pH 6.0이였다. Xylanase의 활성은 $Ca^{2+}$$Mn^{2+}$, $Fe^{2+}$, $Cu^{2+}$, $Al^{3+}$, EDTA의 존재에 의해 억제되었고, $K^+$, $Ag^+$, DTT에 의해 활성화되었다. 이 xylanase는 $40^{\circ}C$에서 120분간 활성을 유지하며 안정하였지만, $60^{\circ}C$에서는 30분에서 거의 모든 활성을 잃어버리는 특성을 보여주었다. 농축된 배양 상등액의 zymography 분석시 42 kDa의 주 밴드와 68과 120 kDa에 두 개의 아주 희미한 밴드를 나타내었다.

Cellulase-Free Thermostable Alkaline Xylanase from Thermophilic and Alkalophilic Bacillus sp. JB-99

  • Naik, G.R.;Johnvesly, B.;Virupakshi, S.;Patil, G.N.;Ramalingam
    • Journal of Microbiology and Biotechnology
    • /
    • 제12권1호
    • /
    • pp.153-156
    • /
    • 2002
  • The characterization of a partially purified, cellulase-free, thermostable alkaline xylanase from thermoalkalophilic Bacillus sp. JB-99 was investigated. The xylanase production was the highest when birchwood xylan was added to a medium containing finely powdered rice bran, showing 4,826 IU$ml^-1$ of activity for 15 h of incubation. The partially purified xylanase exhibited an optimum temperature and pH at $70^C{\circ}$ and 10, respectively. The enzyme was stable at pH 5-11 at $50^C{\circ}$. The xylanase activity was strongly inhibited by $Hg^2+$, while dithiothreitol, cysteine, and ${\beta}$-mercaptoethanol enhanced the activity.

내열성 Cellulase-free Xylanase를 생산하는 고온성 Bacillus sp.의 분리 및 효소 특성 (Isolation of a Thermophilic Bacillus sp. Producing the Thermostable Cellulase-free Xylanase,and Properties of the Enzyme)

  • 김대준;신한재;민본홍;윤기홍
    • 한국미생물·생명공학회지
    • /
    • 제23권3호
    • /
    • pp.304-310
    • /
    • 1995
  • A thermophilic bacterium producing the extracellular cellulase-free xylanase was isolated from soil and has been identified as Bacillus sp. The optimal growth temperature was 50$\circ$C and the optimal pH, 7.0. Under the optimal growth condition, maximal xylanase production was 2.2 units/ml in the flask culture. The enzyme production was induced by xylan and xylose, but was repressed by sucrose or trehalose. The partially purified xylanase was most active at 70$\circ$C. It was found that the enzyme was stable at 65$\circ$C for 10 hours with over 75% of the activity. The enzyme was most active at pH 7.0 and retained 90% of its maximum activity between pH 5.0 and pH 9.0 though Bacillus sp. was not grown on alkaline conditions (>pH 8.0). In addition, the activity of xylanase was over 60% at pH 10.0. At the ambient temperature, the enzyme was stable over a pH range of 5.0 to 9.0 for 10 h, indicating that the enzyme is thermostable and alkalotolerant. The activity of xylanase was completely inhibited by metal ions including Hg$^{2+}$ and Fe$^{2+}$, while EDTA, phenylmethylsulfonyl fluoride (PMSF), $\beta$-mercaptoethanol and SDS didn't affect its activity. The enzyme was also identified to exert no activity on carboxymethylcellulose, laminarin, galactomannan, and soluble starch.

  • PDF

Purification and Characterization of Novel Bifunctional Xylanase, XynIII, Isolated from Aspergillus niger A-25

  • Chen Hong-Ge;Yan Xin;Liu Xin-Yu;Wang Ming-Dao;Huang Hui-Min;Jia Xin-Cheng;Wang Jin-An
    • Journal of Microbiology and Biotechnology
    • /
    • 제16권7호
    • /
    • pp.1132-1138
    • /
    • 2006
  • Three types of xylanases (EC 3.2.1.8) were detected in the strain Aspergillus niger A-25, one of which, designated as XynIII, also displayed ${\beta}-(l,3-1,4)-glucanase$ (EC 3.2.1.73) activity, as determined by a zymogram analysis. XynIII was purified by ultrafiltration and ion-exchange chromatography methods. Its apparent molecular weight was about 27.9 kDa, as estimated by SDS-PAGE. The purified XynIII could hydrolyze birchwood xylan, oat spelt xylan, lichenin, and barley ${\beta}-glucan$, but not CMC, avicel cellulose, or soluble starch under the assay conditions in this study. The xylanase and ${\beta}-(l,3-1,4)-glucanase$ activities of XynIII both had a similar optimal pH and pH stability, as well as a similar optimal temperature and temperature stability. Moreover, the effects of metal ions on the two enzymatic activities were also similar. The overall hydrolytic rates of XynIII in different mixtures of xylan and lichenin coincided with those calculated using the Michaelis-Menten model when assuming the two substrates were competing for the same active site in the enzyme. Accordingly, the results indicated that XynIII is a novel bifunctional enzyme and its xylanase and ${\beta}-(l,3-1,4)-glucanase$ activities are catalyzed by the same active center.

Characterization of Cellulolytic and Xylanolytic Enzymes of Bacillus licheniformis JK7 Isolated from the Rumen of a Native Korean Goat

  • Seo, J.K.;Park, T.S.;Kwon, I.H.;Piao, M.Y.;Lee, C.H.;Ha, Jong K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제26권1호
    • /
    • pp.50-58
    • /
    • 2013
  • A facultative bacterium producing cellulolytic and hemicellulolytic enzymes was isolated from the rumen of a native Korean goat. The bacterium was identified as a Bacillus licheniformis on the basis of biochemical and morphological characteristics and 16S rDNA sequences, and has been designated Bacillus licheniformis JK7. Endoglucanase activities were higher than those of ${\beta}$-glucosidase and xylanase at all temperatures. Xylanase had the lowest activity among the three enzymes examined. The optimum temperature for the enzymes of Bacillus licheniformis JK7 was $70^{\circ}C$ for endoglucanase (0.75 U/ml) and $50^{\circ}C$ for ${\beta}$-glucosidase and xylanase (0.63 U/ml, 0.44 U/ml, respectively). All three enzymes were stable at a temperature range of 20 to $50^{\circ}C$. At $50^{\circ}C$, endoglucanse, ${\beta}$-glucosidase, and xylanase had 90.29, 94.80, and 88.69% residual activity, respectively. The optimal pH for the three enzymes was 5.0, at which their activity was 1.46, 1.10, and 1.08 U/ml, respectively. The activity of all three enzymes was stable in the pH range of 3.0 to 6.0. Endoglucanase activity was increased 113% by $K^+$, while $K^+$, $Zn^+$, and tween 20 enhanced ${\beta}$-glucosidase activity. Xylanase showed considerable activity even in presence of selected chemical additives, with the exception of $Mn^{2+}$ and $Cu^{2+}$. The broad range of optimum temperatures (20 to $40^{\circ}C$) and the stability under acidic pH (4 to 6) suggest that the cellulolytic enzymes of Bacillus licheniformis JK7 may be good candidates for use in the biofuel industry.

Bacillus sp. DSNC 101에 의한 Xylanase 생산 (Production of Xylanase by Bacillus sp. DSNC 101)

  • 조남철
    • 한국식품영양학회지
    • /
    • 제10권3호
    • /
    • pp.344-349
    • /
    • 1997
  • Bacillus sp. DSNC 101은 탄소원으로 2.0% oat spelts xylan, 질소원으로 2.0% yeast extract, 그리고 인산염으로 0.4% K2HPO4를 함유한 pH 8.0의 xylanase 생산 배지에서 4$0^{\circ}C$에서 3일간 배양하였을 때 305.0 unit/ml의 xylanase 활성도를 나타내었다. 본 균주는 xylan, 가용성 전분, 볏짚 분말, Avicel, maltose, 그리고 lactose를 유일한 탄소원으로 사용하였을 때 xylanase를 생산하였으나 glucose, xylose, 그리고 arabinose를 사용하였을 때는 xylanase를 생산하지 않았다. 여러 가지 기질들에 대한 배양 상징액의 분해 활성을 조사한 바, xylan 분해 활성 외에 Avicel, carboxymethyl cellulose, 그리고 전분 및 PNPX에 대한 분해 활성은 나타내지 않았다. Xylanase 합성은 glucose에 의해서는 억제되었으나 xylose에 의해서는 억제되지 않았다. 배양 상징액을 이용한 xylan 분해 산물은 xylobiose를 포함한 소당류들이었으며 xylose는 거의 생성되지 않았다.

  • PDF

Cloning and molecular characterization of a new fungal xylanase gene from Sclerotinia sclerotiorum S2

  • Ellouze, Olfa Elleuch;Loukil, Sana;Marzouki, Mohamed Nejib
    • BMB Reports
    • /
    • 제44권10호
    • /
    • pp.653-658
    • /
    • 2011
  • Sclerotinia sclerotiorum fungus has three endoxylanases induced by wheat bran. In the first part, a partial xylanase sequence gene (90 bp) was isolated by PCR corresponding to catalytic domains (${\beta}5$ and ${\beta}6$ strands of this protein). The high homology of this sequence with xylanase of Botryotinia fuckeliana has permitted in the second part to amplify the XYN1 gene. Sequence analysis of DNA and cDNA revealed an ORF of 746 bp interrupted by a 65 bp intron, thus encoding a predicted protein of 226 amino acids. The mature enzyme (20.06 kDa), is coded by 188 amino acid (pI 9.26). XYN1 belongs to G/11 glycosyl hydrolases family with a conserved catalytic domain containing $E_{86}$ and $E_{178}$ residues. Bioinformatics analysis revealed that there was no Asn-X-Ser/Thr motif required for N-linked glycosylation in the deduced sequence however, five O-glycosylation sites could intervene in the different folding of xylanses isoforms and in their secretary pathway.