• Title/Summary/Keyword: ${\beta}$-glucosidase activity

Search Result 301, Processing Time 0.027 seconds

The Biofunctional Activities and Shelf-life of Low-salt Squid Sikhae (저식염 오징어 식해의 생리활성 및 유통기한 설정)

  • Cho, Won-Il;Kim, Sang-Moo
    • Korean Journal of Food Science and Technology
    • /
    • v.44 no.1
    • /
    • pp.61-68
    • /
    • 2012
  • Sikhae is a traditional Korean fermented seafood with a 7-10% salt concentration. Consumers have begun to look for low-salt food because excess salt is known to cause hypertension and gastric cancer. The quality characteristics of low-salt squid sikhae were investigated at different fermentation temperatures and periods, so as to determine its shelflife. The shelf-life of the low-salt (5%) squid sikhae at $-1^{\circ}C$ based on pH was 142 days. The functional activities of the ethanol extract of squid sikhae such as its antioxidant activity and inhibitions on ${\alpha}$-glucosidase, ${\beta}$-glucuronidase, and elastase were stronger than those of the water extract. Based on the results of sensory evaluation, the low-salted squid sikhae was very similar to fermented seafood. In conclusion, low-salt sikhae is commercially viable.

Changes in isoflavone content and quality characteristics of Cheonggukjang prepared with Bacillus subtilis HJ18-3 and KACC 15935 (Bacillus subtilis HJ18-3과 KACC 15935를 이용하여 제조한 청국장의 품질특성과 isoflavone 함량의 변화)

  • Lee, Kyung Ha;Choi, Hye Sun;Choi, Yoon Hee;Park, Shin Young;Song, Jin
    • Food Science and Preservation
    • /
    • v.21 no.1
    • /
    • pp.121-128
    • /
    • 2014
  • This study was conducted in order to investigate the change of isoflavone composition (glycoside and bio-active aglycone), and to evaluate the quality characteristics of Cheonggukjang, which was prepared by different bacillus strains. After the 48-hour fermentation, the contents of daidzein, genistein, and glycitein in the Bacillus subtilis HJ18-3 have significantly increased up to approximately $89.06{\pm}3.59$, $10.36{\pm}0.28$, and $101.37{\pm}3.67ug/g$, respectively. The contents of daidzein, genistein, and glycitein in the Bacillus subtilis KACC 15935 were $38.88{\pm}5.39$, $12.58{\pm}2.14$, and $80.13{\pm}0.71ug/g$, respectively. The original content of daidzein was 3.96 ug/g, while genistein and glycitein were not measured. However, the contents of daidzen and genistein in HJ18-3 and in KACC 15935 were decreased. The ${\alpha}$-Amylase and cellulase activities of Chungkookjang in HJ18-3 were higher than in the KACC 15935. The contents of Chungkookjang in HJ18-3 were $29.70{\pm}11.66$ and $4861.3{\pm}388.07unit/g$, respectively. The amino type nitrogen contents and ammonia type nitrogen contents of Chungkookjang in KACC 15935 were higher than in the HJ18-3. These results suggested that it could be used to increase the bioactivity via fermentation with the Bacillus subtilis possessing a ${\beta}$-glucosidase activity with a view towards the development of functional foods.

Effect of Fire on Microbial Community Structure and Enzyme Activities in Forest Soil (산불이 토양 미생물 군집과 효소 활성 변화에 미치는 영향)

  • Oh, Ju-Hwan;Lee, Seul-Bi;Park, Sung-Eun;Lee, Yong-Bok;Kim, Pil-Joo
    • Korean Journal of Environmental Agriculture
    • /
    • v.27 no.2
    • /
    • pp.133-138
    • /
    • 2008
  • Fire can affect microbial community structure of soil through altered environmental conditions, nutrient availability, and biotic source for microbial re-colonization. We examined the influence of fire on chemical properties and soil enzyme activities of soil for 10 months. We also characterized the soil microbial community structure through ester-linked fatty acid analysis(EL-FAME). For this study, we established five burned plots(1*1 m) and 5 unburned plots outside the margin of fire. Soil was sampled three soil cores in a each plots and composited for analysis at 1, 3, 5, 8, and 10 month after fire. The fire caused an increase in soil pH, exchangeable Ca, and Mg, organic matter, available $P_2O_5$ compared to unburned sites. The content of $NH_4-N$ in burned site was significantly higher than that of unburned site and this effect continued for 8 months after fire. There was no difference of $NO_3-N$ content in soil between burned and unburned site. Fire caused no change in acid phosphatase and arylsulfatase activities but $\beta$-glucosidase and alkaline phosphatase activities in burned site were increased compared to unburned site. Microbial biomass as estimated by total concentration of EL-FAMEs in burned sites was significantly higher than that of unburned sites at one month after fire. Burned site decreased the EL-FAMEs indicative of gram-positive bacteria and tended to increase the fatty acid associated with gram-negative bacteria at one and three months after fire. The sum of EL-FAME compound $18:2{\omega}6,9c$ and $18:1{\omega}9c$ as served fungal biomarkers was decreased in burned site compared to unburned site.

Effects of Nutrient Source on Soil Physical, Chemical, and Microbial Properties in an Organic Pear Orchard (유기질 비료 급원이 배 과원의 토양 물리화학성 및 미생물성에 미치는 영향)

  • Choi, Hyun-Sug;Li, Xiong;Kim, Wol-Soo;Lee, Youn
    • Korean Journal of Environmental Agriculture
    • /
    • v.30 no.1
    • /
    • pp.16-23
    • /
    • 2011
  • BACKGROUND: This study was conducted to investigate the effects of different organic treatments and a chemical fertilizer on the soil chemical, physical, and microbial properties in an organic pear orchard. METHODS AND RESULTS: Control was referred as a NPK chemical fertilizer (15N-9P-10K) and organic treatments included compost containing with oil cake, compost containing with humic acid, and compost containing with chitin substance. All treatments applied at rates equivalent to 200 g N per tree per year under the tree canopy in March 30 of 2008 and 2009. Soil bulk density, solid phase, liquid phase, and penetration resistance were not significantly different among the treatments. Organic treatment plots had greater organic matter, total nitrogen, potassium, and magnesium concentrations compared to control, and the nutrient concentrations were not consistently affected by the organic treatments. Microbial biomass nitrogen and carbon, dehydrogenase, acid-phosphatase, and chitinase activities overall increased from March to August. Organic treatments, especially compost containing with oil cake or chitin aicd, increased the microbial variables compared to control. CONCLUSION(s): All the organic treatments consistently stimulated soil biological activity. The consistent treatment effect, however, did not occur on the soil mineral nutrition as the trees actively taken up the nutrients during a growing season, which would have diminished treatment effects. Long-term study required for evaluating soil physical properties in a pear orchard.

Study of Tannin Reducing Effect of Aronia by Yeast Isolated from Jeotgal (젓갈에서 분리된 효모를 이용한 아로니아의 탄닌 성분 저감화 효과에 관한 연구)

  • Shin, Hyo-Ju;Byun, Ock-Hee;Kim, Yu-Jin;Bang, Bo-Yeon;Park, Jung Min;Jeong, Yong-Seob;Bai, Dong-Hoon
    • The Korean Journal of Mycology
    • /
    • v.43 no.4
    • /
    • pp.247-252
    • /
    • 2015
  • Aronia (Black chokeberry, Aronia melanocarpa) belonging to the Rosaceae family, is native to eastern North America. Aronia contain high levels of flavonoids, mostly anthocyanins and proanthocyanidins, which are known as condensed tannins. The dominant proanthocyanidins in aronia are (-)-epicatechin and (+)-catechin. The concentration of proanthocyanidins in aronia is higher than in other berries, however due to the astringent taste it is not desirable for consumption. Therefore, the purpose of this study is to evaluate the effect of aronia on the reduction in tannins by yeast isolated from regional Jeotgal. We isolated strains of yeast with high ${\beta}$-glucosidase activity from Jeotgal, with the MTY2 strains exhibiting a reduction in final tannin concentration according to thin layer chromatography (TLC) analysis. MTY2 was confirmed as Kazachstania servazzii using an 18S rDNA sequence and named as K. servazzii MTY2. K. servazzii MTY2 showed most significant growth when K. servazzii MTY2 was cultured in a solution of 10% (w/v) glucose, 3% (w/v) tryptone and 0.1% (w/v) sodium chloride. According to the high performance liquid chromatography (HPLC) analysis, the (+) - catechin peak is present, but (-) - epicatechin peak was reduced at culture condition added with 10% glucose in medium.

Studies on the Production of Fermented Feeds from Agricultural Waste Products (Part IV) -On the Production of Cellulase by Aspergillus niger and Trichoderma viride- (농산폐기물(農産廢棄物)에서 발효사료(醱酵飼料)의 생산(生産)에 관(關)한 연구(硏究)[제4보(第四報)] -Aspergillus niger와 Trichoderma viride에 의(依)한 Cellulase의 생산성(生産性)에 관(關)하여-)

  • Lee, Ke-Ho;Koh, Jeong-Sam;Lee, Kang-Hup
    • Applied Biological Chemistry
    • /
    • v.19 no.3
    • /
    • pp.139-144
    • /
    • 1976
  • In order to investigate the properties of enzymes from two strains of mold, reported in the previous paper, (1) studies have been made concerning the characteristics of cellulase of Aspergillus niger-SM6 and Trichoderma viride-SM10, and summarized as follows. 1. In the semi-purification the recovery of ${\beta}-glucosidase$ was the highest when 80-90% ethanol was used and 0.8 saturation of $(NH_4)_2SO_4$. 2. The characteristics of the semi-purified enzyme were as follows. Aspergillus niger-SM6 Trichoderma viride-SM10 Optimum pH 3.5 4.0 pH stability 3.0-6.0 3.0-6.0 Optimum temperature $60^{\circ}C$ $60^{\circ}C$ Heat stability below $60^{\circ}C$ below $50^{\circ}C$ Optimum reaction time 30 min. 60 min. Optimum CMC concentration 3% 3% 3. The Km values of CMCase were 0.8% and 1.01 for Aspergillus niger-SM6 and Trichoderma viride-SM10, respectively. 4. In the strain of Aspergillus niger-SM6, there were high activity of xylanase and pectinase.

  • PDF

Novosphingobium ginsenosidimutans sp. nov., with the Ability to Convert Ginsenoside

  • Kim, Jin-Kwang;He, Dan;Liu, Qing-Mei;Park, Hye-Yoon;Jung, Mi-Sun;Yoon, Min-Ho;Kim, Sun-Chang;Im, Wan-Taek
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.4
    • /
    • pp.444-450
    • /
    • 2013
  • A Gram-negative, strictly aerobic, non-motile, non-spore-forming, and rod-shaped bacterial strain designated FW-$6^T$ was isolated from a freshwater sample and its taxonomic position was investigated by using a polyphasic approach. Strain FW-$6^T$ grew optimally at $10-42^{\circ}C$ and at pH 7.0 on nutrient and R2A agar. Strain FW-$6^T$ displayed ${\beta}$-glucosidase activity that was responsible for its ability to transform ginsenoside $Rb_1$ (one of the dominant active components of ginseng) to Rd. On the basis of 16S rRNA gene sequence similarity, strain FW-$6^T$ was shown to belong to the family Sphingomonadaceae and was related to Novosphingobium aromaticivorans DSM $12444^T$ (98.1% sequence similarity) and N. subterraneum IFO $16086^T$ (98.0%). The G+C content of the genomic DNA was 64.4%. The major menaquinone was Q-10 and the major fatty acids were summed feature 7 (comprising $C_{18:1}{\omega}9c/{\omega}12t/{\omega}7c$), summed feature 4 (comprising $C_{16:1}{\omega}7c/iso-C_{15:0}2OH$), $C_{16:0}$, and $C_{14:0}$ 2OH. DNA and chemotaxonomic data supported the affiliation of strain FW-$6^T$ to the genus Novosphingobium. Strain FW-$6^T$ could be differentiated genotypically and phenotypically from the recognized species of the genus Novosphingobium. The isolate that has ginsenoside converting ability therefore represents a novel species, for which the name Novosphingobium ginsenosidimutans sp. nov. is proposed, with the type strain FW-$6^T$ (= KACC $16615^T$ = JCM $18202^T$).

Transformation of Ginsenoside Rd to Ginsenoside F2 by Enzymes of Leuconostoc fallax LH3 (Leuconostoc fallax LH3이 생산하는 효소에 의한 Ginsenoside Rd의 Ginsenoside F2로의 전환)

  • Quan, Lin-Hu;Cheng, Le-Qin;Na, Ju-Ryun;Kim, Ho-Bin;Park, Min-Ju;Kim, Se-Hwa;Kim, Myung-Kyum;Yang, Deok-Chun
    • Korean Journal of Medicinal Crop Science
    • /
    • v.16 no.3
    • /
    • pp.155-160
    • /
    • 2008
  • Ginsenosides have been regarded as the principal components, responsible for the pharmacological and biological activities of ginseng. Absorption of major ginsenosides at the gastrointestinal tract was extremely low, when ginseng taken orally. In order to improve the absorption and bioavailability, transformation of major ginsenosides into more active and valuable minor ginsenoside is much required. In this present study, We isolated a lactic acid bacteria Leuconostoc fallax LH3 from the Korean fermented food Kimchi, which have higher ${\beta}$-glucosidase activity. Using the ethanol precipitated curd enzyme of Leuconostoc fallax LH3, we investigated the biotransformation of ginsenoside Rd at different experimental condition to increase transformation. The maximum convertion was supported at 30 $^{\circ}C$ and decreased when temperatures increased. In order to optimize the effect of pH, the curd enzyme was mixed 20 mM sodium phosphate buffer (pH 3.5 to pH 8.0). Ginsenoside Rd was almost hydrolyzed between pH 7.0 and pH 9.0, but not hydrolyzed above pH 10.0. Ginsenoside Rd was hydrolyzed after 24 hrs incubation, but whereas the ginsenoside F2 was appeared from 36 hrs, and all ginsenoside Rd was transformed to F2 after the 60 hrs incubation. Based on this study, the curd enzyme of Leuconostoc fallax LH3 transformed the ginsenoside Rd at the 30$^{\circ}C$ and the pH optimum of 7.0 to 9.0 after the 60 hrs incubation time.

Isolation and Identification of Microorganisms Producing the Soy Protein-Hydrolyzing Enzyme from Traditional Mejus (전통메주로부터 대두단백질 가수분해효소 생산성 미생물의 분리 및 동정)

  • Kang, Min-Jung;Kim, Seong-Ho;Joo, Hyun-Kyu;Lee, Gap-Sang;Yim, Moo-Hyun
    • Applied Biological Chemistry
    • /
    • v.43 no.2
    • /
    • pp.86-94
    • /
    • 2000
  • In order to develop the enzymatic hydrolysis system concerned with taste and flavor, strains having the high hydrolyzing activity on the soy protein were selected from some traditional Mejus. Two molds and one bacterium producing enzymes which were different in character of hydrolysis were isolated and identified. Leucine and azodye enzyme activities of both M4 and M5 were relatively high among in the isolated molds. And, leucine enzyme activity of B16 was the lowest in the isolated bacteria. These strains were isolated as microorganisms having a dissimilar hydrolysis pattern on the soy protein by enzymatic reactions. Mold M4 on the culture solid media was mycelium colors of white and its sclerotia colors were changed from white to black. According to the result of slide culture, radial conidial head, subclavate vesicle, conidia of subglobose, stipes of uncolored with smooth walls and metula and phialides were existed. Because M4 was taxonomically similar to the characteristics of Aspergillus oryzae (ahlburg) species, M4 was identified and named as Aspergillus oryzae M4.Mold M5 showed white and black mycelium on the MEA medium. Mold M5 colony exhibited grayish-green color and have long(7 mm) sporangiophores at slide culture. Sporangia became brownish-gray and the wall of larger sporangia was broken to form small collars, and smaller sporangia were fomed continually from large basal membrane. Columella is globose and hyaline, and sporangiospores are ellipsoidal of small diameter$(80\;{\mu}m)$. Because M5 was taxonomically similar to the Mucor circinelloides of zygomycetes, M5 was was identified and named as Mucor circinelloides M5. Bacteria B16 colony was opaque white, circular and lobate, and had rod shaped endospore. B16 was found positive in stain, catalase, ${\beta}-glucosidse$ and V-P tests. B16 was found to utilize D-fructose, ${\alpha}-D-glucose$, maltose, D-mannose, D-raffinose, stachyose and sucrose. By the morphological and physiological results, the characteristics of B16 was thought to correspond to that of Bacillus megaterium. However, fatty acid composition was similar to Paenibacillus marcerans, requiring further study for the definite identification. Accordingly, Bacteria B16 was provisionally classified and named as Bacillus megaterium B16.

  • PDF

Strain Improvement of Penicillium verruculosum for High Cellulase Production by Induced Mutation (섬유소분해효소 생산증진을 위한 Penicillium verruculosum의 균주개량)

  • 정기철
    • Microbiology and Biotechnology Letters
    • /
    • v.15 no.6
    • /
    • pp.388-395
    • /
    • 1987
  • In order to obtain a regulatory mutant strain with high cellulase activity, a newly isolated Penicillium verrculosum, strain F-3 was used as parental strain since it was proved to be an efficient cellulase producer. A number of experiments were conducted to determine the optimum conditions to in-duce mutagenesis and isolate the desirable mutant strains. Out of several restriction compounds tested, 1.5% oxgall was found to be most effective to restrict the colony size by suppressing overgrowth. Derepression of catabolites was employed as a criterion in selecting mutant strains with high cellulase productivity. Production of cellulase by Penicillium venculosum F-3 was suppressed when cultured on the media with more than 1% of glucose or glycerol. It was found that either irradiation with UV light for 19 mins or treatment with nitrosoguanidine at 200$\mu\textrm{g}$/m1 for 60 mins, induced mutagenesis at desired level, when the survival rate of the spore was 0.2% and 48%, respectively. Three mutant strains of F-3, UV-9, UV-10, and NTG-3 that had the highest cellulase productivity were finally selected, based on filter paper degradation rate, size of clearing zone on the screening plate and cellulase activity in the medium containing cellulose powder. When the mutant strains were compared with parental strain F-3, on the KC-M-W medium containing cellulose powder, the filter paper activities of UV-9, UV-10, and NTG-3 were increased by 34%, 55%, and 41%, respectively. However, the assimilation of cellobiose octaacetate by UV-9 or NTG-3 was markedly reduced. When the mutant UV-10 was grown on cellobiose octaacetate medium (CCA-4) in shaking flasks, the cellulase activities of the mutant increased by 20 to 50% compared to the parental strain. Excreation of soluble protein from the mutant also elevated up to 30%. The mutant also constitutively produced both CMCase and $\beta$-glucosidase, though at relatively low level, in the presence of glucose or cellobiose as carbon sources.

  • PDF