• Title/Summary/Keyword: ${\beta}$-glucosidase 1

Search Result 349, Processing Time 0.024 seconds

Aspergillus niger SFN-416으로부터 생산한 $\beta$-Glucosidase의 정제 및 특성

  • Sung, Chan-Ki;Lee, Sang-Won;Park, Seok-Kyu;Park, Jeong-Ro;Moon, Il-Shik
    • Microbiology and Biotechnology Letters
    • /
    • v.25 no.1
    • /
    • pp.44-50
    • /
    • 1997
  • $\beta $-Glucosidase (EC 3.2.1.21) was purified from Aspergillus niger SFN-416 by a sequential process of ammonium sulfate precipitation, Sepadex G-100 and DEAE-Sephacel column chromatography. Molecular weight of the enzyme was 46, 000 daltons. The K$_{m}$ and V$_{max}$ values for PNPG were 0.67 mM and 25 moles/ml $\cdot $min., respectively. The optimum pH and temperature of the enzyme activity were 3.5 and 58$\circ $C, respectively. The enzyme activity was decreased by addition of metal ions, and increased by addition of metanol, ethanol, isopropanol and 1-butanol at a concentration of 10% (v/v). Stability of the enzyme was increased by addition of isopropanol and 1-butanol at a concentration of 10% (v/v).

  • PDF

Purification and Characterization of an α-D-Galactosidase from Grape Berry

  • Kang, Han-Chul;Kim, Tae-Su
    • Journal of Applied Biological Chemistry
    • /
    • v.43 no.3
    • /
    • pp.141-146
    • /
    • 2000
  • Glycosidase activities were tested from the grape berries, Vitis labruscana B. Takasumi. Among various glycosidases, $\alpha$-D-galactosidase was found to be the most active in the flesh and other glycosidases were considerably active in the order of the following: $\alpha$-D-mannosidase>$\alpha$-D-glucosidase>$\beta$-D-glucosidase>$\beta$-D-galactosidase. In the seeds, $\alpha$-D-glucosidase activity was the highest and other glycosidases such as $\alpha$-D-galactosidase, $\beta$-D-glucosidase, and $\beta$-D-galactosidase were still significantly active. The $\alpha$-D-galactosidase in the grape flesh was purified over 83-folds through salting-out with $(NH_4)_2SO_4$ and a series of chromatographies employing Sephadex G-50, Octyl-Sepharose, Q-Sepha- rose, and Biogel P-100. The enzyme was a monomer of 45 kDs as determined through SDS-PAGE and Sephacryl S-200 chromatography. The purified enzyme showed a preference of $\alpha$-D-galactose to $\beta$-D-galactose as a substrate about 5.4 times. Sulfhydryl specific reagents such as N-ethylmaleimide and iodoacetamide significantly inhibited the enzyme activity to the extents of 48 and 52% of its initial activity, respectively. The optimumpH range of $\alpha$-D-galactosidase was around 6.5-7.0. The enzyme activity increased by 46% in the presence of 1mM $Fe^{2+}$.

  • PDF

Screening and Characterization of an Enzyme with ${\beta}-Glucosidase$ Activity from Environmental DNA

  • Kim, Soo-Jin;Lee, Chang-Muk;Kim, Min-Young;Yeo, Yun-Soo;Yoon, Sang-Hong;Kang, Han-Cheol;Koo, Bon-Sung
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.6
    • /
    • pp.905-912
    • /
    • 2007
  • A novel ${\beta}-glucosidase$ gene, bglA, was isolated from uncultured soil bacteria and characterized. Using genomic libraries constructed from soil DNA, a gene encoding a protein that hydrolyzes a fluorogenic analog of cellulose, 4-methylumbelliferyl ${\beta}-D-cellobioside$ (MUC), was isolated using a microtiter plate assay. The gene, bglA, was sequenced using a shotgun approach, and expressed in E. coli. The deduced 55-kDa amino acid sequence for bglA showed a 56% identity with the family 1 glycosyl hydrolase Chloroflexus aurantiacus. BglA included two conserved family 1 glycosyl hydrolase regions. When using $p-nitrophenyl-{\beta}-D-glucoside$ (pNPG) as the substrate, the maximum activity of the purified ${\beta}-glucosidase$ exhibited at pH 6.5 and $55^{\circ}C$, and was enhanced in the presence of $Mn^{2+}$. The $K_m\;and\;V_{max}$ values for the purified enzyme with pNPG were 0.16 mM and $19.10{\mu}mol/min$, respectively. The purified BglA enzyme hydrolyzed both pNPG and $p-nitrophenyl-{\beta}-D-fucoside$. The enzyme also exhibited substantial glycosyl hydrolase activities with natural glycosyl substrates, such as sophorose, cellobiose, cellotriose, cellotetraose, and cellopentaose, yet low hydrolytic activities with gentiobiose, salicin, and arbutin. Moreover, BglA was able to convert the major ginsenoside $Rb_1$ into the pharmaceutically active minor ginsenoside Rd within 24 h.

Bioconversion of Ginsenoside Rb1 to the Pharmaceutical Ginsenoside Compound K using Aspergillus usamii KCTC 6954 (Aspergillus usamii KCTC 6954에 의한 ginsenoside Rb1로 부터 의약용 소재인 compound K로의 생물학적 전환)

  • Jo, Mi Na;Jung, Ji En;Yoon, Hyun Joo;Chang, Kyung Hoon;Jee, Hee Sook;Kim, Kee-Tae;Paik, Hyun-Dong
    • Microbiology and Biotechnology Letters
    • /
    • v.42 no.4
    • /
    • pp.347-353
    • /
    • 2014
  • ${\beta}$-Glucosidase from Aspergillus usamii KCTC 6954 was used to convert ginsenoside Rb1 to compound K, which has a high bio-functional activity. The enzymatic activities during culturing for 15 days were determined using ${\rho}$-nitrophenyl-${\beta}$-glucopyranoside. The growth rate of the strain and the enzymatic activity were maximized after 6 days (IU; $175.93{\mu}M\;ml^{-1}\;min^{-1}$). The activities were maximized at $60^{\circ}C$ in pH 6.0. During culturing, Rb1 was converted to Rd after 9 d and then finally converted to compound K at 15 d. In the enzymatic reaction, Rb1 was converted to the ginsenoside Rd within 1 h of reaction time and compound K could be detected after 8 h. As a result, this study demonstrates that $Rb1{\rightarrow}Rd{\rightarrow}F2{\rightarrow}$compound K is the main metabolic pathway catalyzed by ${\beta}$-glucosidase and that ${\beta}$-glucosidase is a feasible option for the development of specific bioconversion processes to obtain minor ginsenosides such as Rd and compound K.

Kinetic Modeling of the Enzymatic Hydrolysis of $\alpha$-Cellulose at High Sugar Concentration (순수 섬유소에 대한 고농도 당화공정의 동력학적 모사)

  • 오경근;정용섭홍석인
    • KSBB Journal
    • /
    • v.11 no.2
    • /
    • pp.151-158
    • /
    • 1996
  • For the effective ethanol fermentation, the high concentration of sugar as the substrate of microbial fermentation is required. The most important reason in the inefficient hydrolysis; the easy deactivation of enzyme by temperature or shear stress and the severe inhibition effects of its products. In our work, we comprehended the kinetic characteristics of cellulose and ${\beta}$-glucosidase in the progress of hydrolysis, and observed the potential inhibitory effects of the hydrolyzed products and the deactivation of enzymes. We also tried to present the kinetic model of enzymatic hydrolysis of cellulose, which is applicable to process at the high concentration of sugar. Cellulase and ,${\beta}$-glucosidase exhibit diverse kinetic behaviors. At a level of only 5g/$\ell$ of glucose, the ${\beta}$-glucosidase activity was reduced by more than 70%. This result means that ${\beta}$-glucosldase was the most severely inhibited by glucose. Also at l0g/$\ell$ of cellobiose, the cellulose lost approximately 70% of its activity. ${\beta}$-glucosldase was more sensitive to deactivation than cellulose by about 1.6 times. The comprehensive kinetic model in the range of confidence was obtained and the agreement between the model prediction and the experimental data was reasonably good, testifying to the validity of the model equations used and the associated parameters.

  • PDF

Production of $\beta$-Glucosidase from Aspergillus niger (Aspergillus niger에 의한 $\beta$-Glucosidase 생산)

  • 문일식;박석규이광열
    • KSBB Journal
    • /
    • v.8 no.4
    • /
    • pp.409-414
    • /
    • 1993
  • This study was designed to reveal the conditions for $\beta$-glucosidase production from Aspergillus niger. The maximal enzyme production was obtained when the fungus was cultured at $30^{\circ}C$ for 5~6 days in the optimal medium containing 0.8% CMC, 0.5% beef extract, 0.3% Ca(NO3)2, 0.03% K2HPO4, 0.03% FeSO4, 0.05% Li2SO4, 0.2% tween 80, trace solution 1.0ml and initial pH 4.0, and then final enzyme activity under above conditions was 8.5-9.8 unit/ml culture filtrate.

  • PDF

Purification and Characterization of an Indican-hydrolyzing β-glucosidase from Agrobacterium tumefaciens (Agrobacterium tumefaciens 유래 인디칸 분해활성을 갖는 β-glucosidase의 분리와 특성분석)

  • Hwang, Chang-Sun;Lee, Jin-Young;Kim, Geun-Joong
    • KSBB Journal
    • /
    • v.27 no.6
    • /
    • pp.341-346
    • /
    • 2012
  • Indican (indoxyl-${\beta}$-D-glucoside) is a colorless natural compound and can be used as a precursor for the production of indigo. This production step only require an enzyme, ${\beta}$-glucosidase, that readily screened from microbial resource by using selective media supplemented with indican as a sole carbon source. Agrobacterium tumefaciens was well grown in this media and thus presumed to produce a related enzyme. The corresponding gene, encoding a protein with a calculated molecular mass of 51 kDa, was cloned and overexpressed as MBP fusion proteins. The purified enzyme was determined to be a dimer and showed the maximum activity for indican at pH 7.0 and $40^{\circ}C$. The kinetic parameters for indican, Km and Vmax, were determined to be 1.4 mM and 373.8 ${\mu}M/min/mg$, respectively. The conversion yield of indican into indigo using this enzyme was about 1.7-1.8 folds higher than that of previously isolated enzyme from Sinorhizobium meliloti. Additionally, this enzyme was able to hydrolyze various ${\beta}$-1,4 glycoside substrates.

Molecular Orbital Theory on Cellulolytic Reactivity Between pNP-Cellooligosccharides and ${\beta}$-Glucosidase from Cellulomonas uda CS1-1

  • Yoon, Min-Ho;Nam, Yun-Kyu;Choi, Woo-Young;Sung, Nack-Do
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.11
    • /
    • pp.1789-1796
    • /
    • 2007
  • A ${\beta}$-glucosidase with the molecular mass of 160,000 Da was purified to homogeneity from cell extract of a cellulolytic bacterium, Cellulomonas uda CS1-1. The kinetic parameters ($K_m$ and $V_{max}$) of the enzyme were determined with pNP-cellooligosccharides (DP 1-5) and cellobiose. The molecular orbital theoretical studies on the cellulolytic reactivity between the pNP-cellooligosaccharides as substrate (S) molecules and the purified ${\beta}$-glucosidase (E) were conducted by applying the frontier molecular orbital (FMO) interaction theory. The results of the FMO interaction between E and S molecules verified that the first stage of the reaction was induced by exocyclic cleavage, which occurred in an electrophilic reaction based on a strong charge-controlled reaction between the highest occupied molecular orbital (HOMO) energy of the S molecule and the lowest occupied molecular orbital (LUMO) energy of the hydronium ion ($H_3O^+$), more than endocyclic cleavage, whereas a nucleophilic substitution reaction was induced by an orbital-controlled reaction between the LUMO energy of the oxonium ion ($SH^+$) protonated to the S molecule and the HOMO energy of the $H_2O_2$ molecule. A hypothetic reaction route was proposed with the experimental results in which the enzymatic acid-catalyst hydrolysis reaction of E and S molecules would be progressed via $SN_1$ and $SN_2$ reactions. In addition, the quantitative structure-activity relationships (QSARs) between these kinetic parameters showed that $K_m$ has a significant correlation with hydrophobicity (logP), and specific activity has with dipole moment, respectively.

Improvement of ${\beta}-glucosidase$ Activity of Olea europaea Fruit Extracts Processed by Membrane Technology

  • Mazzei, R.;Giomo, L.;Spadafora, A.;Mazzuca, S.;Drioli, E.
    • Korean Membrane Journal
    • /
    • v.8 no.1
    • /
    • pp.58-66
    • /
    • 2006
  • The ${\beta}-glucosidase$ from olive fruit is of particular interest compared to the ones from other sources because it has shown to have high specifity to convert the oleuropein into dialdehydes, which have antibacterial activity and are of high interest for their application in the food and pharmaceutical fields. The enzyme is not yet commercially available and advanced clean and safe technologies for its purification able to maintain the functional stability are foreseen. The purification of this protein from fruit extracts has been already tempted by electrophoresis but either enzyme deactivation or high background with unclear profiles occurred. In this work, fruit extracts obtained from the ripening stage that showed the highest enzyme activity have been processed by diafiltration and ultrafiltration. Asymmetric membranes made of polyamide or polysulphone having 50 and 30 kDa molecular weight cut-off, respectively, were tested for the diafiltration process. Ultrafiltration membranes made of polyethersulfone with 4 kDa molecular weight cut-off were used to concentrate the dia-filtered permeate solutions. The efficiency of the separation processes was evaluated byenzyme activity tests using the hydrolysis of p-D-nitrophenyl-${\beta}$-D-glucopyranoside (pNPGlc) as reaction model. Qualitative and quantitative electrophoresis were applied to analyze the composition of protein solution before and after the membrane separation; in addition dot blot and western blot analyses were applied to verify the presence of ${\beta}-glucosidase$ in the processed fractions. The overall results showed that the ${\beta}-glucosidase$ functional stability was preserved during the membrane operations and the removal of 20 kDa proteins allowed to increase the specific activity of the enzyme of about 52% compared to the one present in the initial fruit extract.

Cloning and Characterization of a ${\beta}$-Glucosidase from Marine Microbial Metagenome with Excellent Glucose Tolerance

  • Fang, Zemin;Fang, Wei;Liu, Juanjuan;Hong, Yuzhi;Peng, Hui;Zhang, Xuecheng;Sun, Baolin;Xiao, Yazhong
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.9
    • /
    • pp.1351-1358
    • /
    • 2010
  • The demand for ${\beta}$-glucosidases insensitive to product inhibition is increasing in modern biotechnology, for these enzymes would improve the process of saccharification of lignocellulosic materials. In this study, a ${\beta}$-glucosidase gene that encodes a 442-amino-acid protein was isolated from a marine microbial metagenomic library by functional screening and named as bgl1A. The protein was identified to be a member of the glycoside hydrolases 1 family, and was recombinantly expressed, purified, and biochemically characterized. The recombinant ${\beta}$-glucosidase, Bgl1A, exhibited a high level of stability in the presence of various cations and high concentrations of NaCl. Interestingly, it was activated by glucose at concentrations lower than 400 mM. With glucose further increasing, the enzyme activity of Bgl1A was gradually inhibited, but remained 50% of the original value in even as high as 1,000 mM glucose. These findings indicate that Bgl1A might be a potent candidate for industrial applications.