• Title/Summary/Keyword: ${\beta}$-glucanase

Search Result 187, Processing Time 0.023 seconds

Characterization and Antifungal Activity from Soilborne Streptomyces sp. AM50 towards Major Plant Pathogens

  • Jang, Jong-Ok;Lee, Jung-Bok;Kim, Beam-Soo;Kang, Sun-Chul;Hwang, Cher-Won;Shin, Kee-Sun;Kwon, Gi-Seok
    • Korean Journal of Environmental Agriculture
    • /
    • v.30 no.3
    • /
    • pp.346-356
    • /
    • 2011
  • BACKGROUND: Chemical fungicides not only may pollute the ecosystem but also can be environmentally hazardous, as the chemicals accumulate in soil. Biological control is a frequently-used environment-friendly alternative to chemical pesticides in phytopathogen management. However, the use of microbial products as fungicides has limitations. This study isolated and characterized a three-antifungal-enzyme (chitinase, cellulase, and ${\beta}$-1,3-glucanase)-producing bacterium, and examined the conditions required to optimize the production of the antifungal enzymes. METHOD AND RESULTS: The antifungal enzymes chitinase, cellulase, and ${\beta}$-1,3-glucanase were produced by bacteria isolated from an sawmill in Korea. Based on the 16S ribosomal DNA sequence analysis, the bacterial strain AM50 was identical to Streptomyces sp. And their antifungal activity was optimized when Streptomyces sp. AM50 was grown aerobically in a medium composed of 0.4% chitin, 0.4% starch, 0.2% ammonium sulfate, 0.11% $Na_2HPO_4$, 0.07% $KH_2PO_4$, 0.0001% $MgSO_4$, and 0.0001% $MnSO_4$ at $30^{\circ}C$. A culture broth of Streptomyces sp. AM50 showed antifungal activity towards the hyphae of plant pathogenic fungi, including hyphae swelling and lysis in P. capsici, factors that may contribute to its suppression of plant pathogenic fungi. CONCLUSION(S): This study demonstrated the multiantifungal enzyme production by Streptomyces sp. AM50 for the biological control of major plant pathogens. Further studies will investigate the synergistic effect, to the growth regulations by biogenic amines and antifungal enzyme gene promoter.

Purification and Properties of the Factor from Arthrobacter luteus, Capable of Accelerating the Lysis of Yeast Cell Walls (Arthrobacter luteus가 생산(生産)하는 효모(酵母) 세포벽(細胞壁) 용해(溶解) 촉진인자(促進因子)의 정제(精製) 및 그 이화학적(理化學的) 성질(性質))

  • Oh, Hong Rock;Aizono, Yasuo;Shimoda, Tadahisa;Masaru, Funatsu
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.12 no.4
    • /
    • pp.387-394
    • /
    • 1983
  • The factor, which was capable of accelerating the yeast cell wall lysis of the zymolyase(${\beta}-1$, 3-glucanase), was purified to a homogeneous state from the protease fraction of the crude zymolyase by Sephadex G-75 gel filtration and preparative polyacrylamide gel disc electrophoresis. The molecular weight of the purified factor was estimated to be 40,500 by SDS-polylacrylamide gel disc electrophoresis and it's iso-electric point was pH 9.6. The factor was found to be a basic protease consisted of single polypeptide chain with 395 amino acid residues and it showed the $E_{280,cm}^{1%}$ of 11.9 and the molecular extinction coefficient of $4.83{\times}10^4$, respectively.

  • PDF

Studies on the Enzyme from Arthrobacter luteus Accelerating the Lysis of Yeast Cell Walls -II. Separation of the Factor Accelerating the Lysis of Yeast Cell Walls from the Preparation of Crude Zymolyase and Partial Purification of the Zymolyase with the Sephadex G-75 Gel- (Arthrobacter luteus가 생산(生産)하는 효모세포벽(酵母細胞壁) 용해촉진효소(溶解促進酵素)에 관(關)한 연구(硏究) -제 2 보(第2報) : Crude Zymolyase 표품중(標品中)으로부터 효모(酵母) 세포벽(細胞壁) 용해(溶解) 촉진(促進) 인자(因子)의 분리(分離) 및 Sephadex G-75 Gel에 의한 Zymolyase의 부분(部分) 정제(精製)-)

  • Oh, Hong-Rock;Shimoda, Tadahisa;Funatsu, Masaru
    • Korean Journal of Food Science and Technology
    • /
    • v.12 no.4
    • /
    • pp.254-262
    • /
    • 1980
  • A series of experiment were carried out to separate the factor accelerating the lysis of cell wall of $Saccharomyces\;sak{\acute{e}}$ from the preparation of crude zymolyase obtained from Arthrobacter luteus. An attempt was also made to purify the enzyme which is essential for the study on the separation of the factor. The results are summarized as follows: 1. Crude zymolyase was fractionated 5 peaks $(A{\sim}E)$ containing three peaks $(A{\sim}C)$ passed through the column by the chromatography on Biogel CM-30. 2. Among the five peaks, peak E (protease fraction) was found to contain the factor accelerating the lytic activity of the zymolyase. 3. L-c fraction purified in almost free form from the nonlytic ${\beta}-1$, 3-glucanase, protease and inert protein by the affinity adsorption chromatography with Sephadex G-75 gel was obtained from zymolyase fraction (peak D). When it was subjected to polyacrylamide gel disc electrophoresis, only one clear protein band was observed at pH 4. 5, but still detected two or more band at pH 8. 3.

  • PDF

Protoplast Isolation and Reversion from Lyophyllum ulmarium (만가닥버섯의 원형질체 분리(分離) 및 환원(還元))

  • Yoo, Young-Bok;You, Chang-Hyun;Park, Yong-Hwan;Chang, Kwon-Yawl
    • The Korean Journal of Mycology
    • /
    • v.15 no.1
    • /
    • pp.14-18
    • /
    • 1987
  • This experiment was undertaken to investigate proper conditions for protoplast formation from Lyophyllum ulmarium. Combination of Novozym 234, ${\beta}-Glucuronidase$ and ${\beta}-D-Glucanase$ with 0.6 M Sucrose was the most effective for isolation of protoplasts. The optimal reaction time of mycelium with the lytic mixture was 3 hrs in shaking condition at 120 strokes $min-^1$. When the mycelium of L. ulmarium was cultured for 6 days on yeast glucose agar medium at $25^{\circ}C$, the formation of protoplasts was effective. The yeast glucose agar medium stabilized with 0.6 M sucrose was the most effective for reversion of protoplasts.

  • PDF

Identification of Multiple Active Forms in Cellulase-xylanase of Aspergillus sp. 8-17 by Active Staining

  • Shin, Pyung-Gyun;Ahn, Jun-Bae;Kim, Chang-Young;Jeong, Won-Hwa;Ryu, Jin-Chang
    • Journal of Microbiology and Biotechnology
    • /
    • v.8 no.1
    • /
    • pp.49-52
    • /
    • 1998
  • A fungal strain able to produce filter paper activity (FPase) was isolated from soil by testing the ability to hydrolyze using filter paper. The isolated strain was identified as an Aspergilus sp. judging from its morphological and microscopical characteristics. The cellulase-xylanase system of Aspergillus sp. 8-17 was detected in situ after gel electrophoresis in the presence of SDS and showed that each protein pattern had a distinct polypeptide composition. ${\beta}$-1,4-Glucanase, cellobiohydrolase, and xylanase activity profiles differ from protein patterns. The Aspergillus sp. 8-17 hydrolytic enzymes responsible for the hydrolysis of ${\beta}$-glucan, MUC, and xylan have multiple active forms.

  • PDF

Characterization of a Multimodular Endo-β-1,4-Glucanase (Cel9K) from Paenibacillus sp. X4 with a Potential Additive for Saccharification

  • Lee, Jae Pil;Kim, Yoon A;Kim, Sung Kyum;Kim, Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.4
    • /
    • pp.588-596
    • /
    • 2018
  • An endo-${\beta}$-1,4-glucanase gene, cel9K, was cloned using the shot-gun method from Paenibacillus sp. X4, which was isolated from alpine soil. The gene was 2,994 bp in length, encoding a protein of 997 amino acid residues with a predicted signal peptide composed of 32 amino acid residues. Cel9K was a multimodular enzyme, and the molecular mass and theoretical pI of the mature Cel9K were 103.5 kDa and 4.81, respectively. Cel9K contains the GGxxDAGD, PHHR, GAxxGG, YxDDI, and EVxxDYN motifs found in most glycoside hydrolase family 9 (GH9) members. The protein sequence showed the highest similarity (88%) with the cellulase of Bacillus sp. BP23 in comparison with the enzymes with reported properties. The enzyme was purified by chromatography using HiTrap Q, CHT-II, and HiTrap Butyl HP. Using SDS-PAGE/activity staining, the molecular mass of Cel9K was estimated to be 93 kDa, which is a truncated form produced by the proteolytic cleavage of its C-terminus. Cel9K was optimally active at pH 5.5 and $50^{\circ}C$ and showed a half-life of 59.2 min at $50^{\circ}C$. The CMCase activity was increased to more than 150% in the presence of 2 mM $Na^+$, $K^+$, and $Ba^{2+}$, but decreased significantly to less than 50% by $Mn^{2+}$ and $Co^{2+}$. The addition of Cel9K to a commercial enzyme set (Celluclast 1.5L + Novozym 188) increased the saccharification of the pretreated reed and rice straw powders by 30.4% and 15.9%, respectively. The results suggest that Cel9K can be used to enhance the enzymatic conversion of lignocellulosic biomass to reducing sugars as an additive.

Biocontrol of Damping-Off(Rhizoctonia solani) in Cucumber by Trichoderma asperellum T-5 (Trichoderma asperellum T-5를 이용한 오이 모잘록병(Rhizoctonia solani)의 생물학적 제어)

  • Ryu, Ji-Yeon;Jin, Rong-De;Kim, Yong-Woong;Lee, Hyang-Burm;Kim, Kil-Yong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.39 no.4
    • /
    • pp.185-194
    • /
    • 2006
  • A fungal strain of Trichoderma having strong chitinolytic activity was isolated from field soil enriched with crabshell for several years. Based on 5.8S rRNA, partial 18S, 28S rRNA genes, ITS1, ITS2 sequence analysis and morphological characteristics, the fungus was identified as Trichoderma asperellum and named as Trichoderma asperellum T-5 (TaT-5). The fungus released lytic enzymes such as chitinase and ${\beta}$-1, 3-glucanse, and produced six antifungal substances in chitin broth medium. To demonstrate the protective effect of TaT-5 against damping-off in cucumber plant caused by Rhizoctonia solani, TaT-5 culture broth (TA), chitin medium (CM) and distilled water (DW) were applied to each pot at 10 days after sowing, respectively. Then, the homogenized hyphae of R. solani were infected to each pot at 1 week after TaT-5 inoculation. During experimental period, fresh weight of shoot and root in cucumber plant more increased at TA treatment compared to other treatments. PR-proteins (${\beta}$-1, 3-glucanase and chitinase) activities in cucumber leaves markedly increased at CM and DW treatments, but the activity slightly increased and then decreased at TA treatment at 3 days after infection of R. solani. The activity of PR-proteins activities in cucumber roots at all treatments decreased with time where the degree of decrement was more alleviated at TA treatment than CM and DW. These results suggest that the lytic enzymes (chitinase and ${\beta}$-1, 3-glucanse) and antifungal substances produced by TaT-5 can reduce the pathogenic attack by R. solani in cucumber plants.

Studies on Protoplast Isolation of Pleurotus cornucopiae (노랑느타리버섯의 원형질체(原形質體) 분리(分離)에 관한 연구(硏究))

  • Lee, Yeon-Hee;Park, Yong-Hwan;Yoo, Young-Bok;Min, Kyung-Hee
    • The Korean Journal of Mycology
    • /
    • v.14 no.2
    • /
    • pp.141-148
    • /
    • 1986
  • The optimal conditions for high yields of mycelial protoplasts from P. cornucopiae were established. The concentraion of enzyme system containing Novozym 234, ${\beta}-D-glucanase$ and ${\beta}-glucuronidase$ was $5mg\;ml^{-1}$ each. The osmotic stabilizer most effective for protoplast isolation was O.6 M sucrose. The optimal reaction time of mycelium with the lytic mixture was 90 min in a shaking condition at 120 strokes $min^{-1}$. When the myelium of P. cornucopiae was cultured for 4 days on mushroom complete medium at $28^{\circ}C$, the formation of protoplast was effective. When the pH of the digestion mixture with O.6 M sucrose as stabilizer varied between pH 4.0 and 7.0, the production of protoplasts was effective in phosphate buffer (pH 6.2) and Na-maleate buffer (pH 5.0). Generally, phosphate buffer was more effective for protoplast isolation than Na-maleate buffer, but 0.6 M sucrose osmotic stabilizer without adjusting pH was most effective. Using these conditions, protoplasts from P. cornucopiae were obtained at a ratio $1{\times}10^7\;ml^{-1}$.

  • PDF

One-Step Enzymatic Synthesis of Blue Pigments from Geniposide for Fabric Dyeing

  • Cho, Y.J.;Kim, S.Y.;Kim, J.;Choe, E.K.;Kim, S.I.;Shin, H.J.
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.11 no.3
    • /
    • pp.230-234
    • /
    • 2006
  • In this study, we describe a one-step chemoenzymatic reaction for the production of natural blue pigments, in which the geniposide from Gardenia extracts is transformed by glycosidases to genipin. Genipin is then allowed to react with amino acids, thereby generating a natural blue pigment. The ${\beta}-glycosidases$, most notably Isolase (a variant of ${\beta}-glucanase$), recombinant ${\beta}-glycosidases$, Cellulase T, and amylases, were shown to hydrolyze geniposide to produce the desired pigments, whereas the ${\alpha}-glycosidases$ did not. Among the 20 tested amino acids, glycine and tyrosine were associated with the highest dye production yields. The optimal molar ratio of geniposide to glycine, two reactants relevant to pigment production, was unity The natural blue pigments produced in this study were used to dye cotton, silk, and wool. The color yields of the pigments were determined to be significantly higher than those of other natural dyes. Furthermore, the color fastness properties of these dyes were fairly good, even in the absence of mordant.

Cellulase Production in the Digestive Organs of Reticulitermes speratus, a Native Termite from Milyang, Korea

  • Lee, Young-Min;Kim, Yoon-Hee;Cho, Moon-Jung;Shin, Keum;Kim, Yeong-Suk
    • Journal of the Korean Wood Science and Technology
    • /
    • v.38 no.5
    • /
    • pp.421-428
    • /
    • 2010
  • This study investigated on enzyme production in the digestive organs of the native termite (Reticulitermes speratus) in Milyang, Korea. Four types of major cellulases [EG (endo-1,4-${\beta}$-glucanase), BGL (${\beta}$-glucosidase), CBH (cellobiohydrolase) and BXL (${\beta}$-1,4-xylosidase)] were present in the digestive organs of the termite. The strong enzyme activity for BGL was found from the native termite, and also shown that the enzyme was distributed in the salivary gland, foregut, and hindgut. BXL, which breaks down hemicellulose near the amorphous region, was detected mainly from salivary gland, foregut, and midgut. However, CBH was distributed mainly in the hindgut. Meanwhile, EG which degrades cellulose, was found mainly in the hindgut and salivary glands. These facts indicate that celluases production patterns are differ from different sites compare to the same species found in Japan, suggesting that enzyme production in the digestive organs of termites is changed according to their habitats.