• Title/Summary/Keyword: ${\beta}$-galactosidases

Search Result 11, Processing Time 0.025 seconds

Production of ${\alpha}$- and ${\beta}$-Galactosidases from Bifidobacterium longum subsp. longum RD47

  • Han, Yoo Ri;Youn, So Youn;Ji, Geun Eog;Park, Myeong Soo
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.5
    • /
    • pp.675-682
    • /
    • 2014
  • Approximately 50% of people in the world experience abdominal flatulence after the intake of foods containing galactosides such as lactose or soybean oligosaccharides. The galactoside hydrolyzing enzymes of ${\alpha}$- and ${\beta}$-galactosidases have been shown to reduce the levels of galactosides in both the food matrix and the human gastrointestinal tract. This study aimed to optimize the production of ${\alpha}$- and ${\beta}$-galactosidases of Bifidobacterium longum subsp. longum RD47 with a basal medium containing whey and corn steep liquor. The activities of both enzymes were determined after culturing at $37^{\circ}C$ at pH 6.0 for 30 h. The optimal production of ${\alpha}$- and ${\beta}$-galactosidases was obtained with soybean oligosaccharides as a carbon source and proteose peptone no. 3 as a nitrogen source. The optimum pH for both ${\alpha}$- and ${\beta}$-galactosidases was 6.0. The optimum temperatures were $35^{\circ}C$ for ${\alpha}$-galactosidase and $37^{\circ}C$ for ${\beta}$-galactosidase. They showed temperature stability up to $37^{\circ}C$. At a 1 mM concentration of metal ions, $CuSO_4$ inhibited the activities of ${\alpha}$- and ${\beta}$-galactosidases by 35% and 50%, respectively. On the basis of the results obtained in this study, B. longum RD47 may be used for the production of ${\alpha}$- and ${\beta}$-galactosidases, which may reduce the levels of flatulence factors.

The Reaction Conditions of $\beta$-Galactosidases from Aspergillus oryzae, Bovine Liver, and Saccharomyces fragilis to Asialofetuin (Asialofetuin에 대한 Aspergillus oryzae, bovine liver Saccharomyces fragilis 유래 $\beta$-galactosidase의 반응 조건)

  • 윤재경;이영재;구본웅;윤상영;유창수;김하영
    • YAKHAK HOEJI
    • /
    • v.44 no.2
    • /
    • pp.197-203
    • /
    • 2000
  • The enzymatic properties of $\beta$-galactosidases from Aspergillus oryzae, bovine liver and Saccharomyces pragilis have been studied using enzyme-linked lectin assay based on the RC $A_{120}$ and BS-II lectins which specifically bind to terminal galactose and GlcNAc residue, respectively. Asialofetuin, a monomeric glycoprotein with approximately 48 kDa in molecular weight, was used as a substrate. This glycoprotein contains three N-linked triantennary complex type carbohydrate chains with each of which terminating in Ga1$\beta$P1 longrightarrow4G1cNAc (74%). Their optimal pHs were 3.5 and 6.5 (A. oryzae), and 3.5~5.5 (bovine liver and S. fragilis) at 37$^{\circ}C$ during 24 hrs, and the effective concentrations were 0.9, 2.9, and 1.7 mg/ml, respectively The enzyme from A oryzae requires 100 mM N $a^{+}$ or $K^{+}$, while the enzyme from bovine liver requires $Ba^{2+}$ for activity. However all of the three $\beta$-galactosidases were inactivated by SDS and C $u^{2+}$. These results indicate that the hydrolysis of glycoprotein such as asialofetuin depends on the reaction conditions of $\beta$-galactosidases and some metal ions. ions.

  • PDF

Two-stage Enzymatic Conversion of Lactose to Galactooligosaccharides by Two-type ${\beta}-galactosidases$ (두 종류 ${\beta}-galactosidases$ 의 이단 반응을 이용한 갈락토올리고당의 제조)

  • In, Man-Jin;Kim, Min-Hong;Chae, Hee-Jeong
    • Korean Journal of Food Science and Technology
    • /
    • v.29 no.2
    • /
    • pp.376-378
    • /
    • 1997
  • In an attempt to increase the conversion of lactose to galactoligosaccharides, two types of ${\beta}-galactosidases$ originated from Thermus caldophilus and Bacillus sp. A4442 reacted with 60% (w/w) lactose consecutively. Concentration of galactooligosaccharides reached up to 60% at the 85% conversion of the initial lactose maintaining transgalactosylation ratio ca. 90%.

  • PDF

Studies on Microbial Extracellular $\beta$-Gala-ctosidase

  • Lee, Keun-Eok
    • Proceedings of the Korean Society for Applied Microbiology Conference
    • /
    • 1979.04a
    • /
    • pp.113.2-114
    • /
    • 1979
  • $\beta-Galactosidase$ is an enzyme which catalizes hydrolysis of lactose, a natural substrate, to glucose and galctose and transferring some monosac-charide units to active acceptors as sugar or alcohol. The occurence of $\beta-Galactosidase$ is known in various microorganisms, animals and higher plants and has been studied by many investigatigators. Especially, a great deal of articles for the enzyme of E. coli have been presented in genetic control mechanism and induction-repression effects of proteins, On the other hand, in the dairly products industry, it is important to hydrolyes lactosd which is the principal sugar of milk and milk products. During the last few years, the interest in enzymatic hydrolysis of milk lactose has teen increased, because of the lactose intolerence in large groups of the population. Microbial $\beta-Galactosidases$ are considered potentially most suitable for processing milk to hydrolyse lactose and, in recent years, the immobilized enzyme from yeast has been examined. Howev, most of the microbial $\beta-Gal$ actosidase are intracellular enzymes, except a few fungal $\beta-Gala-$ ctosidases, and extracellular $\beta-Galactosidase$ which may be favorable to industrial applieation is not so well investigated. On this studies, a mold producing a potent extracellular $\beta-Galactosidase$ was isolated from soil and identified as an imperfect fungus, Beauveria bassians. In this strain, both extracellular and intracellular $\beta-Galactosidases$ were produced simultaneously and a great increase of the extracellular production was acheved by improving the cultural conditions. The extracellular enzyme was purified more than 1, 000 times by procedures including Phosphocellulose and Sephadex G-200 chromatographies. Several characteristics of the enzymewas clarified with this preparation. The enzyme has a main subunit of molecular weight of 80, 000 which makes an active aggregate. And at neutral pH range, it has optimum pH for activity and stability. The Km value was determined to be 0.45$\times$10$^{-3}$ M for $o-Nitrophenyl-\beta-Galactoside.$ In any event, it is interesting to sttudy the $\beta-Galactosidase$ of B. bassiana for the mechanism of secretion and conformational structure of enzyme.

  • PDF

High Production of Thermostable Beta-galactosidase of Bacillus stearothemophilus in mesophiles

  • Okada, Hirosuke;Hirata, Haruhisa;Negoro, Seiji
    • Proceedings of the Korean Society for Applied Microbiology Conference
    • /
    • 1986.12a
    • /
    • pp.509.1-509
    • /
    • 1986
  • Recent advances in recombinant DNA techniques have provided a tool for breeding of microorganisms of hyper production. Enzyme production by cloned microorganism has some advantages. They are ⅰ) Enzymes can be produced by a microorganism easily cultured ⅱ) Hyper production. ⅲ) In some cases, such as thermophilic enzyme gene is cloned in a mesophilic bacteria, the enzyme purification procedure can be simplified. One example, production of thermophilic ${\beta}$-galactosidase in B. subtilis will be presented. Bacillus stearothermophilus IAM 11001 produced three ${\beta}$-galactosidases, ${\beta}$-galactosidase I, II and III (${\beta}$-gal-I, II and III). By connecting restriction fragments of the chromosomal DNA to plasmid vector, followed by transformation of Escherichia coli, two ${\beta}$-galactosidase genes (bgaA and bgaB) located close to each other on the chromosome were cloned.

  • PDF

Properties of ${\beta}$-Galactosidase from Bacillus licheniformis Isolated from Cheongkookjang (청국장 유래 Bacillus licheniformis의 ${\beta}$-Galactosidase 특성)

  • Yoon, Ki-Hong
    • Microbiology and Biotechnology Letters
    • /
    • v.40 no.1
    • /
    • pp.17-22
    • /
    • 2012
  • A bacterial strain was isolated from homemade Cheongkookjang as a producer of the ${\beta}$-galactosidase, capable of hydrolyzing lactose to liberate galactose and glucose residues. The isolate YB-1105 has been identified as Bacillus licheniformis on the basis of its 16S rDNA sequence, morphology and biochemical properties. ${\beta}$-Galactosidase activity was detected in both the culture supernatant and the cell extract of B. licheniformis YB-1105. The enzymes of both fractions demonstrated maximum activity for hydrolysis of para-nitrophenyl-${\beta}$-D-galactopyranoside (pNP-${\beta}Gal$) under identical reaction conditions of pH 6.5 and $50^{\circ}C$. However, ${\beta}$-galactosidase activity from the culture filtrate was affected more than that from the cell free extract at acidic pHs and high temperatures. The hydrolyzing activity of both ${\beta}$-galactosidases for pNP-${\beta}Gal$ was dramatically decreased by the addition of low concentrations of galactose, but was only marginally decreased by high concentrations of glucose or mannose.

Phospho-$\beta$-galactosidase gene located on plasmid in lactobacillus casei (플라스미드에 존재하는 lactobacillus casei의 phospho-$\beta$-galactosidases 유전자)

  • 문경희;박정희;최순영;이유미;김태한;하영칠;민경희
    • Korean Journal of Microbiology
    • /
    • v.27 no.3
    • /
    • pp.181-187
    • /
    • 1989
  • Plasmid DNA was isolated from Lactobacillus casei SW-M1($Lac^{+}$strain). The curing frequencies of pPLac plasmid from L. casei SW-M1 showed 43% for acriflavin treatment and 53% for ethidium bromide treatment after 3 times transfer. On the charaterization of pPLac plasmid, it was found that the plasmid contained gene encoding phospho-$\beta$-galactosidase for lactose utilization. Lactose-PTS(phosphotransferase system)was involved in membrane transport system in $Lac^{+}$ strain. Induction of phospho-$\beta$-galactosidase was specially effective by galactose, lower effect with lactose and glucose but not by IPTG(isopropyl-$\beta$-D-thiogalactoside). This result showed that induction of phospho-$\beta$-galactosidase by IPTG did not appeared. The catabolite repression of phospho-$\beta$-galactosidase synthesis by glucose was not found in L. casei.

  • PDF

Enzymatic Transgalactosylation of Ascorbic Acid by ${\beta}-Galactosidase$ (${\beta}-Galactosidase$에 의한 Ascorbic Acid의 효소적 배당화)

  • Jang, So-Young;Kim, Young-Hoi;Kim, Myung-Kon;Kim, Young-Soo;Hong, Jai-Sik
    • Applied Biological Chemistry
    • /
    • v.41 no.7
    • /
    • pp.500-504
    • /
    • 1998
  • The enzymatic transgalactosylation of L-ascorbic acid was investigated to synthesize a chemically stable form of L-ascorbic acid by using commercially available ${\beta}-galactosidases$. Among various enzymes examined, Aspergillus oryzae ${\beta}-galactosidase$ was found to be formed the derivative of ascorbic acid in a high yield from ascorbic acid and lactose. The reaction product was isolated by ion exchange chromatography on a $Dowex\;1\;{\times}\;8$ (Cl - form) resin and Toyopearl HW-40S gel chromatography. The product was identified as $6-O-{\beta}-_D-galactopyranosyl-_L-ascorbic\;acid$ on the basis of various experimental results, viz., UV, IR, $^1H-NMR,\;^{13}C-NMR$ and mass spectral data.

  • PDF

Construction and Analysis of Food-Grade Lactobacillus kefiranofaciens β-Galactosidase Overexpression System

  • He, Xi;Luan, MingJian;Han, Ning;Wang, Ting;Zhao, Xiangzhong;Yao, Yanyan
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.4
    • /
    • pp.550-558
    • /
    • 2021
  • Lactobacillus kefiranofaciens contains two types of β-galactosidase, LacLM and LacZ, belonging to different glycoside hydrolase families. The difference in function between them has been unclear so far for practical application. In this study, LacLM and LacZ from L. kefiranofaciens ATCC51647 were cloned into constitutive lactobacillal expression vector pMG36e, respectively. Furtherly, pMG36n-lacs was constructed from pMG36e-lacs by replacing erythromycin with nisin as selective marker for food-grade expressing systems in Lactobacillus plantarum WCFS1, designated recombinant LacLM and LacZ respectively. The results from hydrolysis of o-nitrophenyl-β-galactopyranoside (ONPG) showed that the β-galactosidases activity of the recombinant LacLM and LacZ was 1460% and 670% higher than that of the original L. kefiranofaciens. Moreover, the lactose hydrolytic activity of recombinant LacLM was higher than that of LacZ in milk. Nevertheless, compare to LacZ, in 25% lactose solution the galacto-oligosaccharides (GOS) production of recombinant LacLM was lower. Therefore, two β-galactopyranosides could play different roles in carbohydrate metabolism of L. kefiranofaciens. In addition, the maximal growth rate of two recombinant strains were evaluated with different temperature level and nisin concentration in fermentation assay for practical purpose. The results displayed that 37℃ and 20-40 U/ml nisin were the optimal fermentation conditions for the growth of recombinant β-galactosidase strains. Altogether the food-grade Expression system of recombinant β-galactosidase was feasible for applications in the food and dairy industry.

Influence of Gibberellic Acid on α-D-Galactosidase Activity in the Grape Berry

  • Kang, Han-Chul;Lee, Seon-Hwa;Kim, Jong-Bum
    • Journal of Applied Biological Chemistry
    • /
    • v.44 no.2
    • /
    • pp.53-58
    • /
    • 2001
  • Glycosidase activities in the grape flesh (Marguerite) were assayed, and the order of activity was marked as follows: ${\alpha}$-D-galactosidase>${\alpha}$-D-mannosidase>${\alpha}$-D-glucosidase>${\beta}$-D-galactosidase>${\beta}$-D-glucosidase. Of these glycosidases, ${\alpha}$- and ${\beta}$-D-galactosidases were prominently expressed by the treatment of gibberellic acid, resulting in 56 and 238% increase of activity, respectively. Most of ${\alpha}$-D-galactosidase was found in the flesh texture, and the activity increase by gibberellic acid occurred mostly in this tissue. The increase in ${\alpha}$-D-galactosidase activity was dependent on the concentration of gibberellic acid treated, showing a positive correlation. Gibberellic acid affected the content of total protein in the grape flesh, 49% increase by 75 ppm treatment. Above this concentration, higher gibberellic acid level did not influence the protein expression. Specific activity of the ${\alpha}$-D-galactosidase still increased, showing 24% increase in activity. Grape flesh subjected by gibberellic acid (100 ppm) resulted in the increased activity against a natural substrate, stachyose, showing 55% increase in activity from the grapes treated with 100 ppm of gibberellic acid. Other natural substrates, such as melibiose and raffinose, were also considerably hydrolyzed, and the extent was similar to that of stachyose hydrolysis. During postharvest storage, ${\alpha}$-D-galactosidase activity in the grape flesh increased by 51% after 20 days and then declined slowly.

  • PDF