• Title/Summary/Keyword: ${\beta}$-dual

Search Result 109, Processing Time 0.026 seconds

Identification of Proapoptopic, Anti-Inflammatory, Anti-Proliferative, Anti-Invasive and Anti-Angiogenic Targets of Essential Oils in Cardamom by Dual Reverse Virtual Screening and Binding Pose Analysis

  • Bhattacharjee, Biplab;Chatterjee, Jhinuk
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.6
    • /
    • pp.3735-3742
    • /
    • 2013
  • Background: Cardamom (Elettaria cardamom), also known as "Queen of Spices", has been traditionally used as a culinary ingredient due to its pleasant aroma and taste. In addition to this role, studies on cardamom have demonstrated cancer chemopreventive potential in in vitro and in vivo systems. Nevertheless, the precise poly-pharmacological nature of naturally occurring chemo-preventive compounds in cardamom has still not been fully demystified. Methods:In this study, an effort has been made to identify the proapoptopic, anti-inflammatory, anti-proliferative, anti-invasive and anti-angiogenic targets of Cardamom's bioactive principles (eucalyptol, alpha-pinene, beta-pinene, d-limonene and geraniol) by employing a dual reverse virtual screening protocol. Experimentally proven target information of the bioactive principles was annotated from bioassay databases and compared with the virtually screened set of targets to evaluate the reliability of the computational identification. To study the molecular interaction pattern of the anti-tumor action, molecular docking simulation was performed with Auto Dock Pyrx. Interaction studies of binding pose of eucalyptol with Caspase 3 were conducted to obtain an insight into the interacting amino acids and their inter-molecular bondings. Results:A prioritized list of target proteins associated with multiple forms of cancer and ranked by their Fit Score (Pharm Mapper) and descending 3D score (Reverse Screen 3D) were obtained from the two independent inverse screening platforms. Molecular docking studies exploring the bioactive principle targeted action revealed that H- bonds and electrostatic interactions forms the chief contributing factor in inter-molecular interactions associated with anti-tumor activity. Eucalyptol binds to the Caspase 3 with a specific framework that is well-suited for nucleophilic attacks by polar residues inside the Caspase 3 catalytic site. Conclusion:This study revealed vital information about the poly-pharmacological anti-tumor mode-of-action of essential oils in cardamom. In addition, a probabilistic set of anti-tumor targets for cardamom was generated, which can be further confirmed by in vivo and in vitro experiments.

Chemical Constituents of the Root of Dystaenia takeshimana and Their Anti-Inflammatory Activity

  • Kim, Ju-Sun;Kim, Jin-Cheul;Shim, Sang-Hee;Lee, Eun-Ju;Jin, Wen-Yi;Bae, Ki-Hwan;Son, Kun-Ho;Kim, Hyun-Pyo;Kang, Sam-Sik;Chang, Hyeun-Wook
    • Archives of Pharmacal Research
    • /
    • v.29 no.8
    • /
    • pp.617-623
    • /
    • 2006
  • In our ongoing search for bioactive compounds originating from the endemic species in Korea, we found that the hexane and EtOAc fractions of the MeOH extract from the root of Dystaenia takeshimana (Nakai) Kitagawa (Umbelliferae) showed cyclooxygenase-2 (COX-2) and 5- lipoxygenase (5-LOX) dual inhibitory activity by assessing their effects on the production of prostaglandin $D_2\;(PGD_2)$ and leukotriene $C_4\;(LTC_4)$ in mouse bone marrow-derived mast cells. By activity-guided fractionation, five coumarins, viz. psoralen (2), xanthotoxin (3), scopoletin (4), umbelliferone (5), and (+)-marmesin (6), together with ${\beta}-sitosterol$ (1), were isolated from the hexane fraction, and two phenethyl alcohol derivatives, viz. 2-methoxy-2-(4'-hydroxyphenyl)ethanol (7) and 2-hydroxy-2-(4'-hydroxyphenyl)ethanol (8), three flavonoids, viz. apigenin (9), luteolin (10), and cynaroside (11), as well as daucosterol (12) were isolated from the EtOAc fraction using silica gel column chromatography. In addition, D-mannitol (13) was isolated from the BuOH fraction by recrystallization. Two of the coumarins, scopoletin (4) and (+)- marmesin (6), the two phenethyl alcohol derivatives (7, 8) and the three flavonoids (9-11) were isolated for the first time from this plant. Among the compounds isolated from this plant, the five coumarins as well as the three flavonoids showed COX-2/5-LOX dual inhibitory activity. These results suggest that the anti-inflammatory activity of D. takeshimana might in part occur via the inhibition of the generation of eicosanoids.

Isoforms of Glucose 6-Phosphate Dehydrogenase in Deinococcus radiophilus

  • Sung, Ji-Youn;Lee, Young-Nam
    • Journal of Microbiology
    • /
    • v.45 no.4
    • /
    • pp.318-325
    • /
    • 2007
  • Glucose 6-phosphate dehydrogenase (G6PDH, EC 1.1.1.49) in Deinococcus radiophilus, an extraordinarily UV-resistant bacterium, was investigated to gain insight into its resistance as it was shown to be involved in a scavenging system of superoxide $(O_2^{-1})$ and peroxide $(O_2^{-2})$ generated by UV and oxidative stresses. D. radiophilus possesses two G6PDH isoforms: G6PDH-1 and G6PDH-2, both showing dual coenzyme specificity for NAD and NADP. Both enzymes were detected throughout the growth phase; however, the substantial increase in G6PDH-1 observed at stationary phase or as the results of external oxidative stress indicates that this enzyme is inducible under stressful environmental conditions. The G6PDH-1 and G6PDH-2 were purified 122- and 44-fold (using NADP as cofactor), respectively. The purified G6PDH-1 and G6PDH-2 had the specific activity of 2,890 and 1,033 U/mg protein (using NADP as cofactor) and 3,078 and 1,076 U/mg protein (using NAD as cofactor), respectively. The isoforms also evidenced distinct structures; G6PDH-1 was a tetramer of 35 kDa subunits, whereas G6PDH-2 was a dimer of 60kDa subunits. The pIs of G6PDH-1 and G6PDH-2 were 6.4 and 5.7, respectively. Both G6PDH-1 and G6PDH-2 were inhibited by both ATP and oleic acid, but G6PDH-1 was found to be more susceptible to oleic acid than G6PDH-2. The profound inhibition of both enzymes by ${\beta}-naphthoquinone-4-sulfonic$ acid suggests the involvement of lysine at their active sites. $Cu^{2+}$ was a potent inhibitor to G6PDH-2, but a lesser degree to G6PDH-1. Both G6PDH-1 and G6PDH-2 showed an optimum activity at pH 8.0 and $30^{\circ}C$.

Cyclodextrins' effect on the enatioseparation of some PPIs and capillary electrophoresis method development for determining rabeprazole enantiomers

  • Choi, Yusung;Pham, Thuy-Vy;Mai, Xuan-Lan;Truong, Quoc-Ky;Le, Thi-Anh-Tuyet;Nguyen, Thi-Ngoc-Van;Lee, Gunhee;Kang, Jong-Seong;Mar, Woongchon;Kim, Kyeong Ho
    • Analytical Science and Technology
    • /
    • v.32 no.5
    • /
    • pp.185-195
    • /
    • 2019
  • Over the past decades, chiral switch of the proton pump inhibitors (PPIs) has been received widespread attention in therapeutic advantages as well as pharmaceutical analysis. In present study, the influence of cyclodextrins (CDs) on the chiral separation of four common PPIs (lansoprazole, omeprazole, pantoprazole, and rabeprazole) was investigated. The results demonstrated that capillary electrophoresis (CE) with dual CDs as a chiral selector system is a possible and promising method for the enantioseparation of these PPIs. Rabeprazole, which is the most challenging and acid-labile candidate among four PPIs, was selected for further development of the technique. To optimize CE condition, the effects of capillary parameters and background electrolytes on the enantioseparation were investigated. Finally, the best chiral separation was acheived by using sulfobutyl ether-${\beta}$-CD, and ${\gamma}$-CD as dual chiral selectors. The developed CE method not only provided the effective chiral separation but also showed the good stability of rabeprazole. The proposed method was successfully validated according to the International Conference on Harmonization guideline and effectively applied to determine rabeprazole enantiomers in commercial rabeprazole tablets, with recoveries ranging from 97.17 % to 103.29 % of the label content.

LncRNA H19/miR-29b-3p/PGRN Axis Promoted Epithelial-Mesenchymal Transition of Colorectal Cancer Cells by Acting on Wnt Signaling

  • Ding, Dayong;Li, Changfeng;Zhao, Tiancheng;Li, Dandan;Yang, Lei;Zhang, Bin
    • Molecules and Cells
    • /
    • v.41 no.5
    • /
    • pp.423-435
    • /
    • 2018
  • This investigation was aimed at working out the combined role of lncRNA H19, miR-29b and Wnt signaling in the development of colorectal cancer (CRC). In the aggregate, 185 CRC tissues and corresponding para-carcinoma tissues were gathered. The human CRC cell lines (i.e. HT29, HCT116, SW480 and SW620) and normal colorectal mucosa cell line (NCM460) were also purchased. Si-H19, si-NC, miR-29b-3p mimics, miR-29b-3p inhibitor, si-PGRN and negative control (NC) were, respectively, transfected into the CRC cells. Luciferase reporter plasmids were prepared to evaluate the transduction activity of $Wnt/{\beta}-catenin$ signaling pathway, and dual-luciferase reporter gene assay was arranged to confirm the targeted relationship between H19 and miR-29b-3p, as well as between miR-29b-3p and PGRN. Finally, the proliferative and invasive capacities of CRC cells were appraised through transwell, MTT and scratch assays. As a result, overexpressed H19 and down-expressed miR-29b-3p displayed close associations with the CRC patients' poor prognosis (P < 0.05). Besides, transfection with si-H19, miR-29b-3p mimic or si-PGRN were correlated with elevated E-cadherin expression, decreased snail and vimentin expressions, as well as less-motivated cell proliferation and cell metastasis (P < 0.05). Moreover, H19 was verified to directly target miR-29b-3p based on the luciferase reporter gene assay (P < 0.05), and miR-29b-3p also bound to PGRN in a direct manner (P < 0.05). Finally, addition of LiCl ($Wnt/{\beta}-catenin$ pathway activator) or XAV93920 ($Wnt/{\beta}-catenin$ pathway inhibitor) would cause remarkably altered E-cadherin, c-Myc, vimentin and snail expressions, as well as significantly changed transcriptional activity of ${\beta}-catenin/Tcf$ reporter plasmid (P < 0.05). In conclusion, the lncRNA H19/miR-29b-3p/PGRN/Wnt axis counted a great deal for seeking appropriate diagnostic biomarkers and treatment targets for CRC.

Effects of melatonin on heart rate in rats (멜라토닌이 랫트에서 심박수에 미치는 영향)

  • Shim, So-yeon;Shin, Se-rin;Kim, Jin-shang
    • Korean Journal of Veterinary Research
    • /
    • v.41 no.4
    • /
    • pp.497-503
    • /
    • 2001
  • Evidence from the last 10 years have been suggested that melatonin mainly produce a depressant effect on the cardiac system, but we found an activating effect of melatonin on heart rate in this research. To determine the hypothesis that melatonin has dual effects on physiological behaviour of cardiac system, we investigated the effects of melatonin on heart rate in isolated rat atria and anesthetized rats. Regardless of concentration, melatonin produced bradycardia in the 84 cases of 148 experiments (57 %) and tachycardia in the 64 cases of 148 experiments (43 %). And in atrium, melatonin produced a decrease automaticity in 52 cases of 86 experiments (60 %) and increase automaticity in 40 % (34/86 cases). Also, these effects are not significnat relationship with concetration of melatonin. The melatonin-induced bradycardia in vivo was inhibited by pretreatment of atropine or bilateral cervical vagotomy. Also, in isolated atrium the melatonin-induced decrease in automaticity was inhibited by pretreatment of atropine. These melatonin-induced responses were potenitated by pretreatment of propranolol. The melatonin-induced tachycardia in vivo was inhibited by pretreatment of propranolol, nifedipine or bilateral cervical vagotomy, but not by pretreatment of atropine. The melatonin-induced incease in automaticity in isolated atrium was converted to decrease in automaticity by pretreatment of propranolol. In addition, the change in heart rate caused by adrenoceptor agonists was inhibited by pretreatment of melatonin. These results indicate that melatonin-induced bradycardia may be related to a muscarinic receptor activation and melatonin-induced tachycardia may be related to a $\beta$-adrenoceptor stimulation.

  • PDF

Microstructures and Mechnical Properties of Ni-Al-Fe Ternary Alloys (Ni-Al-Fe 3 원계합금의 미세조직 및 기계적 특성)

  • Choi, Dap-Chun;Bae, Dae-Sung
    • Journal of Korea Foundry Society
    • /
    • v.24 no.6
    • /
    • pp.356-365
    • /
    • 2004
  • Mechanical properties and microstructures of the Ni-AI-Fe and Ni-AI-Fe-(B, Zr) alloys which containing $10{\sim}30at$.%Fe, 0.1at.%B and/or 0.1at.%Zr have been investigated. The experimental results showed that the microstructures of Ni25Al were changed from a single phase ${\gamma}$ to dual phase ${\gamma}$ and ${\beta}$ by addition of 27at.%Fe. Ni45Al, however, kept the single ${\beta}$ phase even though Fe was added upto 30at.%. The hardness of Ni25Al were increased from $H_RB$ 70 to $H_RC$ 39 by addition of 27at.%Fe. In the case of Ni45Al which have $H_RC$ 37, the hardness was decreased by lOat.%Fe addition, but increased with 30at.%Fe. The yield strength and ultimate compressive strength in the compressive test have showed a similar trend with the hardness change. The strain to fracture was 14% at maximum and achieved in Ni25Al-27at.%Fe and Ni25Al-27at.%Fe-0.1 at.%B alloys. The Ni45Al showed a relatively low strain to fracture as 4%. The impact absorption energy of Ni25Al increased from 0.74 kg-m to 1.81 kg-m by addition of 27at.%Fe. In case of Ni45Al, the addition of lOat.%Fe and lOat.%Fe with small amounts of Band Zr did not change significantly the impact absorption energy of 0.60 kg-m, whereas the addition of 30at.%Fe with small amounts of B and Zr increased it slightly. In fracture tests, both of two basic materials showed the same intergranular fracture but by adding Fe it changed to the cleavage fracture mode or co-existing of cleavage and intergranular fractures.

Physicochemical Properties, Stabilities and Pharmacokinetics of Cephalosporin 3'-Quinolone Dithiocarbamate (세팔로스포린 3'-퀴놀론의 물리화학적 성질, 안정성 및 체내약물동태)

  • 나성범;공재양;김완주;지웅길
    • YAKHAK HOEJI
    • /
    • v.37 no.6
    • /
    • pp.638-646
    • /
    • 1993
  • A cepfialosporin with an aminothiazoiylmethoxyimino-type side chain at the 7 position and bicyclic quinolone dithicarbamate at the 3' position was synthesized. It has broad and potent antivacterial activity in vitro. The antibacterial spectrum reflects contributions of both the cephalosporin moiety and the quinolone moiety. Thus, this compound was named DACD implying a dualaction cephalosporin derivative. In this paper, the physicochemical proper-ties (lipid-water partition, pKa), stability and pharmacokinetics of DACD were determined and compared with cefotaxime 3'-norfloxacin dithiocarbamate (CENO). Stability tests were studied in pH 1.20, 6.80 and 8.00 buffers and in the presence of AB type human plasma, rat liver homogenate and its .betha.-lactamase. The pharmacokinetic parameters of DACD were evaluated in mice after a single intravenous dose of 40 mg/kg. The results are as follows. The lipid-water partition coefficient of DACD was higher than that of CENO. The calculated pKa values of CENO and DACD, were 6.82$\pm$0.03, 7.53$\pm$0.21, respectively. In the hydrolysis test, half-lives (t$^{1/2}$) of CENO and DACD was 66.0 hr and 80.0 hr in pH 6.80 buffer, 190 hr and 91.4 hr in pH 8.00 buffer. CENO and DACD were rapidly hydrolyzed in human plasma and in rat liver hornogenate. Half-lives (t$_{1/2}$ of CENO and DACD were 1.29 hr and 1.15 hr in hyman plasma, 0.62 hr and 0.71 hr rat liver homogenate. In $\beta$-lactamase stability test, CENO and DACD were very stable to the .betha.-lactamases obtained from three different strains. Half-life (t$_{1/2}$) and areas under the curve (AUC) in mice were 2.33 hr and 15.97 (mg.h/1), respectively.

  • PDF

Globular Adiponectin Exerts a Pro-Inflammatory Effect via IκB/NF-κB Pathway Activation and Anti-Inflammatory Effect by IRAK-1 Downregulation

  • Lee, Kyoung-Hee;Jeong, Jiyeong;Woo, Jisu;Lee, Chang-Hoon;Yoo, Chul-Gyu
    • Molecules and Cells
    • /
    • v.41 no.8
    • /
    • pp.762-770
    • /
    • 2018
  • Adiponectin, a hormone produced by adipose tissue, is very abundant in plasma, and its anti- and pro-inflammatory effects are reported. However, the mechanisms of these pro- and anti-inflammatory effects are not fully defined. Herein, we evaluated the dual inflammatory response mechanism of adiponectin in macrophages. Short-term globular adiponectin (gAd) treatment induced $I{\kappa}B{\alpha}$ degradation, $NF-{\kappa}B$ nuclear translocation, and $TNF-{\alpha}$ production in RAW 264.7 cells. Polymyxin B pretreatment did not block gAd-induced $I{\kappa}B{\alpha}$ degradation, and heated gAd was unable to degrade $I{\kappa}B{\alpha}$, suggesting that the effects of gAd were not due to endotoxin contamination. gAd activated IKK and Akt, and inhibition of either IKK or Akt by dominant-negative $IKK{\beta}$ ($DN-IKK{\beta}$) or DN-Akt overexpression blocked gAd-induced $I{\kappa}B{\alpha}$ degradation, suggesting that short-term incubation with gAd mediates inflammatory responses by activating the $I{\kappa}B/NF-{\kappa}B$ and PI3K/Akt pathways. Contrastingly, long-term stimulation with gAd induced, upon subsequent stimulation, tolerance to gAd, lipopolysaccharide, and CpG-oligodeoxynucleotide, which is associated with gAd-induced downregulation of IL-receptor-associated kinase-1 (IRAK-1) due to IRAK-1 transcriptional repression. Conclusively, our findings demonstrate that the pro- and anti-inflammatory responses to gAd in innate immune cells are time-dependent, and mediated by the activation of the $I{\kappa}B/NF-{\kappa}B$ pathway, and IRAK-1 downregulation, respectively.

Fear of Falling and Falls Efficacy with Bone Mineral Density in the Middle and Old Aged Women (재가 중.노년 여성의 골밀도와 낙상두려움 및 낙상효능감에 관한 연구)

  • Lee, Hea-Young;Bak, Won-Sook;Yang, Hyung-In
    • Journal of muscle and joint health
    • /
    • v.16 no.1
    • /
    • pp.5-12
    • /
    • 2009
  • Purpose: The purpose of this study was to investigate bone mineral density(BMD) and fear of falling and falls efficacy in the middle and old aged women over 50 years. Methods: The subjects consisted of 409 women. One-way ANOVA, Pearson's correlations and multiple regression were used to test the BMD, fear of falling and falls efficacy scale by using SPSSWIN 12.0. The BMD of the calcaneus were measured with peripheral dual energy x-ray absorptiometry(DEXA). Results: The average age was 63 years old and the average T-score was -3.21 in patient with osteoporosis, -1.72 with osteopenia, and .13 with normal. There were significant differences in the status of the BMD according to age(p=.000), height(p=.000), weight(p=.000), married status(p=.000), age of menarche(p=.002), and menopause(p=.002). The fear of falling was related with falls efficacy(r=-.247, p=.01), BMD(r=-.337, p=.01). Falls efficacy($\beta$=-.21, p=.000)and BMD($\beta$=-.26, p=.000) were predicting variables of fear of falling. The model explained 13% of the variance in fear of falling(F=27.38, p=.000). Conclusion: Fear of falling and falls efficacy were related with the bone mineral density. Falls efficacy and BMD may be useful for the predicting fear of falling for women in middle and old age. Further studies with assessment of fall-related risk-factors and a longitudinal study are necessary to assess with falls efficacy, and BMD with age.