• Title/Summary/Keyword: ${\beta}$-aminobutyric acid

Search Result 46, Processing Time 0.027 seconds

Effects of ${\gamma}-Aminobutyric$ Acid on Pancreatic Amylase Secretion Evoked by Sodium Oleate in Anesthetized Rats

  • Park, Yong-Deuk;Cui, Zheng-Yun;Park, Hyung-Seo;Park, Hyoung-Jin
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.6 no.1
    • /
    • pp.27-31
    • /
    • 2002
  • ${\gamma}-Aminobutyric$ Acid (GABA) is contained in pancreatic islet ${\beta}-cells$ although its physiological role in pancreatic exocrine function is completely unknown at the present time. Recently, we have reported that exogenous GABA enhances secretagogue-evoked exocrine secretion in the isolated, perfused rat pancreas. This study was aimed to investigate an effect of exogenous GABA on pancreatic exocrine secretion in vivo evoked by intestinal stimulation. Rats were anesthetized with urethane (1.4 g/kg) after 24-h fast with free access to water. GABA $(10,\;30\;and\;100\;{\mu}mol/kg/h),$ given intravenously, did not change spontaneous pancreatic amylase secretion but dose-dependently elevated the amylase secretion evoked by intraduodenal sodium oleate (0.05 mmol/h). GABA $(30\;{\mu}mol/kg/h)$ also further increased the amylase secretion stimulated by CCK (30 pmol/kg/h) plus secretin (20 pmol/kg/h) but failed to modify the amylase secretion induced by secretin alone. GABA $(10,\;30\;and\;100\;{\mu}mol/kg/h)$ also dose-dependently elevated pancreatic amylase secretion evoked by CCK alone. Bicuculline $(100\;{\mu}mol/kg/h),$ a $GABA_A-receptor$ antagonist, markedly reduced the GABA-enhanced pancreatic responses to sodium oleate, CCK plus secretin or CCK alone. The results indicate that GABA enhances the sodium oleate-evoked pancreatic amylase secretion via $GABA_A-receptor$ in anesthetized rats, which may account for elevating the action of CCK released by sodium oleate.

Defense Response and Suppression of Phytophthora Blight Disease of Pepper by Water Extract from Spent Mushroom Substrate of Lentinula edodes

  • Kang, Dae-Sun;Min, Kyong-Jin;Kwak, A-Min;Lee, Sang-Yeop;Kang, Hee-Wan
    • The Plant Pathology Journal
    • /
    • v.33 no.3
    • /
    • pp.264-275
    • /
    • 2017
  • The spent mushroom substrate (SMS) of Lentinula edodes that was derived from sawdust bag cultivation was used as materials for controlling Phytophthora blight disease of pepper. Water extract from SMS (WESMS) of L. edodes inhibited mycelial growth of Phytophthora capsici, suppressed Phytophthora blight disease of pepper seedlings by 65% and promoted growth of the plant over 30%. In high performance liquid chromatography (HPLC) analysis, oxalic acid was detected as the main organic acid compound in WESMS and inhibited the fungal mycelium at a minimum concentration of 200 mg/l. In quantitative real-time PCR, the transcriptional expression of CaBPR1 (PR protein 1), CaBGLU (${\beta}$-1,3-glucanase), CaPR-4 (PR protein 4), and CaPR-10 (PR protein 10) were significantly enhanced on WESMS and DL-${\beta}$-aminobutyric acid (BABA) treated pepper leaves. In addition, the salicylic acid content was also increased 4 to 6 folds in the WESMS and BABA treated pepper leaves compared to water treated leaf sample. These findings suggest that WESMS of L. edodes suppress Phytophthora blight disease of pepper through multiple effects including antifungal activity, plant growth promotion, and defense gene induction.

Studies on the Amino Acid and Fatty Acid Compositions in the Seed and Pulpy Substance of Feral Peach (Prunus persica Batsch var. davidiana Max.) (야생 돌복숭아 씨와 과육의 아미노산 및 지방산 조성에 관한 연구)

  • Kim, Han-Soo
    • Journal of Life Science
    • /
    • v.17 no.1 s.81
    • /
    • pp.125-131
    • /
    • 2007
  • Amino acid and fatty acid compositions of the physiological activity substance in the seed and pulpy substance of feral peach (Prunus persica Batsch var. davidiana Max.) were analyzed for the use as an biohealth functional processed products. The proximate compositions in the vacuum freeze dried seed and pulpy substance of feral peach were carbohydrate 63.92% and 75.11%, crude protein 27.85% and 12.77%, moisture 3.61% and 4.69%, crude fat 1.21% and 4.80%, crude ash 3.41% and 2.63%, respectively. Total amino acid contents in the protein of feral peach seed were 3,444.35 mg%, and the major amino acids were aspartic acid(681.10 mg%), glutamic acid(495.48 mg%), alanine(283.66 mg%), serine(251.36 mg%), proline(229.80 mg%), lysine(192.31 mg%) and leucine(191.34 mg%), respectively. Total amino acid contents in the protein of feral peach pulpy substance were 1,064.02 mg%, and the major amino acids followed aspartic acid(250.15 mg%), glutamic acid(129. 63 mg%), lysine, proline, leucine, alanine and serine, in a decreasing order. The richest total amino acid content contained in feral peach seed and pulpy substance was aspartic acid, followed by glutamic acid. The amount of free amino acids of feral peach seed were 6,215.34 ms%, and the major free amino acids were glutamic acid(827.25 mg%), threonine, valine and $\beta-aminobutyric$ acid, respectively. Free amino acid contents of pulpy substance were 683.82 mg%, and the major free amino acids were glutamic acid(339.49 mg%), serine proline, alanine and $\gamma-amino-n-butyric$ acid. Especially, in the case of glutamic acid, it was highest. The compositions of major total fatty acid in the lipid feral peach (Prunus persica Batsch var. davidiana Max.) seed and pulpy sabstance were linoleic acid($C_{18:2}$, n-6) and linolenic acid($C_{18:3}$, n-3), particularly.

Constituents of the DRIED TOMATO FRUITS(Lycopersicon esculentum, Mi Soo) (건조 토마토의 성분조성에 관하여)

  • Chung, Tae-Yung;Hayase, Fumitaka;Okitani, Akihiro;Kato, Hiromichi
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.16 no.3
    • /
    • pp.1-10
    • /
    • 1987
  • For surveying of constituents concerning the flavor of the dried tomato fruits, nonvolatile components such as minerals, sugars, free amino acids, nucleotides and lipids were analyzed and determined. Potassium, calcium and phosphorus were the major conatituents of ashes, but trace amounts of cadmium and lead were determined. Glucose and fructose were the major constituents in sugars, and the latter slightly showed higher value than the former. The content of total free amino acids was 8322.5mg%, and that of the major components such as asparagine, aspartic acid, urea. glutamic acid, ${\beta}-alanine$ and ${\gamma}-aminobuthyric$acid showed 58.01% to the total amount. The nucleotides were composed of CMP, UMP, GMP and IMP, and CMP among them showed the highest value as about 58.07% to the total amount. On the other hand, IMP showed the lowest one. The major components of the total fatty acids from the saponifiable fraction in the lipids were $C_{18:2}$, $C_{18:1}$ and $C_{16:0}$ and those of the total sterols from unsaponifiable one were stigmasterol and ${\beta}-sitosterol$.

  • PDF

Participation of central GABAA receptors in the trigeminal processing of mechanical allodynia in rats

  • Kim, Min Ji;Park, Young Hong;Yang, Kui Ye;Ju, Jin Sook;Bae, Yong Chul;Han, Seong Kyu;Ahn, Dong Kuk
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.21 no.1
    • /
    • pp.65-74
    • /
    • 2017
  • Here we investigated the central processing mechanisms of mechanical allodynia and found a direct excitatory link with low-threshold input to nociceptive neurons. Experiments were performed on male Sprague-Dawley rats weighing 230-280 g. Subcutaneous injection of interleukin 1 beta ($IL-1{\beta}$) ($1ng/10{\mu}L$) was used to produce mechanical allodynia and thermal hyperalgesia. Intracisternal administration of bicuculline, a gamma aminobutyric acid A ($GABA_A$) receptor antagonist, produced mechanical allodynia in the orofacial area under normal conditions. However, intracisternal administration of bicuculline (50 ng) produced a paradoxical anti-allodynic effect under inflammatory pain conditions. Pretreatment with resiniferatoxin (RTX), which depletes capsaicin receptor protein in primary afferent fibers, did not alter the paradoxical anti-allodynic effects produced by the intracisternal injection of bicuculline. Intracisternal injection of bumetanide, an Na-K-Cl cotransporter (NKCC 1) inhibitor, reversed the $IL-1{\beta}$-induced mechanical allodynia. In the control group, application of GABA ($100{\mu}M$) or muscimol ($3{\mu}M$) led to membrane hyperpolarization in gramicidin perforated current clamp mode. However, in some neurons, application of GABA or muscimol led to membrane depolarization in the $IL-1{\beta}$-treated rats. These results suggest that some large myelinated $A{\beta}$ fibers gain access to the nociceptive system and elicit pain sensation via $GABA_A$ receptors under inflammatory pain conditions.

The Effects of Germination Conditions on GABA and the Nutritional Components of Barley (발아조건에 따른 보리의 GABA 함량 및 영양성분 변화)

  • Cha, Mi-Na;Jun, Hyun-Il;Song, Geun-Seoup;Kim, Young-Soo
    • Korean Journal of Food Science and Technology
    • /
    • v.44 no.1
    • /
    • pp.41-47
    • /
    • 2012
  • Steeping and germination conditions were investigated in order to produce barley containing a high ${\gamma}$-aminobutyric acid (GABA) content, and the changes in GABA and nutritional components before and after germination were also evaluated in this study. Water absorption rates of three barleys increased alongside both steeping time and steeping temperature. The highest GABA contents of the three barleys, 10.4-14.1 mg/100 g, were obtained from the steeping condition of $25^{\circ}C$ for 24 hr. The GABA contents of germinated barleys ranged from 14.3 to 20.9 mg/100 g, increasing by 3.9 to 14.6 times compared with raw barley. The crude lipid, crude ash and total mineral contents were slightly decreased after germination. The major fatty acids of the three barleys before and after germination were linoleic and palmitic acids. ${\beta}$-glucan contents of three barleys were slightly decreased after germination.

Characterization of Inorganic Components, Free Sugars, Amino Acids, and Fatty Acids in Angelica gigas Nakai (참당귀의 무기성분, 유리당, 아미노산 및 지방산 함량 특성)

  • Kil, Hyun Young;Seong, Eun Soo;Sim, Jae Man;Choi, Seon Kang;Heo, Kweon;Yu, Chang Yeon
    • Korean Journal of Medicinal Crop Science
    • /
    • v.23 no.6
    • /
    • pp.454-459
    • /
    • 2015
  • Background : The major compounds of Angelica species are decursin, decursinol angelate, nodakenin, umbelliferone and ${\beta}$-sitosterol, which act anti-inflammatories, reduce pains, protect the liver and enhance the immune system. This study investigated the chemical compositions, minerals, metals, sugars and overall amino acid composition in Angelica gigas Nakai. Methods and Results : Powder of Angelica roots smaller than 30 mesh were used. Physico-chemical analysis revealed the presence of carbohydrates (62.0%), crude proteins (13.9%), moisture (11.4%), crude fats (7.3%) and ash (5.4%). Results showed that potassium was present in the highest amount (1,859 ppm), followed by magnesium (214.5 ppm), calcium (147.3 ppm) and sodium (6.0 ppm). Free sugar profiles showed the presence of sucrose (29.3 g/100 g). The total amino acids concentrations was 9,752 mg/100 g, the most common and dominant amino acids were arginine (2,181 mg/100 g), glutamic acid (1,212 mg/100 g) and aspartic acid (834 mg/100 g). The total free amino acids contents was 1,476 mg/100 g, in which the most common amino acid were arginine (932 mg/100 g), glutamic acid (127 mg/100 g), and ${\gamma}$-aminobutyric acid (80.4 mg/100 g). The fatty acid composition of A. gigas showed a higher concentration of unsaturated fatty acids such as linoleic acid (443.9 mg/100 g) and palmitic acid (181.3 mg/100 g) according to gas chromatography. Conclusions : These results showed that Angelica roots can be used in various fields of foods and medicines, and in the preparation of cosmetics.

Pachymic Acid Enhances Pentobarbital-Induced Sleeping Behaviors via GABAA-ergic Systems in Mice

  • Shah, Vikash Kumar;Choi, Jae Joon;Han, Jin-Yi;Lee, Mi Kyeong;Hong, Jin Tae;Oh, Ki-Wan
    • Biomolecules & Therapeutics
    • /
    • v.22 no.4
    • /
    • pp.314-320
    • /
    • 2014
  • This study was investigated to know whether pachymic acid (PA), one of the predominant triterpenoids in Poria cocos (Hoelen) has the sedative-hypnotic effects, and underlying mechanisms are mediated via ${\gamma}$-aminobutyric acid (GABA)-ergic systems. Oral administration of PA markedly suppressed locomotion activity in mice. This compound also prolonged sleeping time, and reduced sleep latency showing synergic effects with muscimol (0.2 mg/kg) in shortening sleep onset and enhancing sleep time induced by pentobarbital, both at the hypnotic (40 mg/kg) and sub-hypnotic (28 mg/kg) doses. Additionally, PA elevated intracellular chloride levels in hypothalamic primary cultured neuronal cells of rats. Moreover, Western blotting quantitative results showed that PA increased the amount of protein level expression of $GAD_{65/67}$ over a broader range of doses. PA increased ${\alpha}$- and ${\beta}$-subunits protein levels, but decreased ${\gamma}$-subunit protein levels in $GABA_A$ receptors. The present experiment provides evidence for the hypnotic effects as PA enhanced pentobarbital-induced sleeping behaviors via $GABA_A$-ergic mechanisms in rodents. Taken together, it is proposed that PA may be useful for the treatment of sleep disturbed subjects with insomnia.

Antioxidant activity and polyphenol content of fermented Sparassis latifolia extracts (꽃송이버섯 발효물의 항산화 활성 및 폴리페놀 함량 변화)

  • Yang, Seung-Hwa;Lee, Yong-Jo;Kim, Da-Song;Shin, Hyun-Jae
    • Journal of Mushroom
    • /
    • v.17 no.4
    • /
    • pp.268-274
    • /
    • 2019
  • Sparassis latifolia is a useful medicinal mushroom that has recently gained popularity in Asia. It has a rich flavor and is a good source of nutrients contains a large number of polyphenols for a functional food or dietary supplement. In addition, S. latifolia is rich in beta-glucan and gamma-aminobutyric acid (GABA). These two compounds have been reported to show immune-stimulating and anticancer effects by numerous studies. In this study, four species of lactic acid bacteria (Lactobacillus plantarum subsp. plantarum, L. acidophilus, L. helveticus, and L. delbrueckii subsp. bulgaricus) were used to ferment the fruiting body of S. latifolia. Fermented S. latifolia extracts were found to have a higher polyphenol content and antioxidant activity following fermentation as well as increased protease activity.

Effects of Ginsenoside Metabolites on GABAA Receptor-Mediated Ion Currents

  • Lee, Byung-Hwan;Choi, Sun-Hye;Shin, Tae-Joon;Hwang, Sung-Hee;Kang, Ji-Yeon;Kim, Hyeon-Joong;Kim, Byung-Ju;Nah, Seung-Yeol
    • Journal of Ginseng Research
    • /
    • v.36 no.1
    • /
    • pp.55-60
    • /
    • 2012
  • In a previous report, we demonstrated that ginsenoside Rc, one of major ginsenosides from Panax ginseng, enhances ${\gamma}$-aminobutyric acid (GABA) $receptor_A$ ($GABA_A$)-mediated ion channel currents. However, little is known about the effects of ginsenoside metabolites on $GABA_A$ receptor channel activity. The present study investigated the effects of ginsenoside metabolites on human recombinant $GABA_A$ receptor (${\alpha}_1{\beta}_1{\gamma}_{2s}$) channel activity expressed in Xenopus oocytes using a two-electrode voltage clamp technique. M4, a metabolite of protopanaxatriol ginsenosides, more potently inhibited the GABA-induced inward peak current ($I_{GABA}$) than protopanaxadiol (PPD), a metabolite of PPD ginsenosides. The effect of M4 and PPD on $I_{GABA}$ was both concentration-dependent and reversible. The half-inhibitory concentration ($IC_{50}$) values of M4 and PPD were 17.1${\pm}$2.2 and 23.1${\pm}$8.6 ${\mu}M$, respectively. The inhibition of $I_{GABA}$ by M4 and PPD was voltage-independent and non-competitive. This study implies that the regulation of $GABA_A$ receptor channel activity by ginsenoside metabolites differs from that of ginsenosides.