• Title/Summary/Keyword: ${\alpha}2,6$-Sialyltransferase

Search Result 9, Processing Time 0.019 seconds

Mammalian Sialyltransferase Superfamily : Structure and Function

  • Lee, Young-Choon
    • Proceedings of the Korean Society of Life Science Conference
    • /
    • 2002.12a
    • /
    • pp.13-19
    • /
    • 2002
  • To elucidate the regulatory mechanism for expression of sialyl-glycoconjugates and their biological functions, ninetheen sialyltransferase cDNAs including eleven by our group or co-works have been cloned and characterized so far. The cloned sialyltransferases are classified into four families according to the carbohydrate linkages they synthesize: ${\alpha}2,3-sialyltransferase$ (ST3Gal I-VI), ${\alpha}$ 2,6-sialyltransferase (ST6Gal I), GalNAc ${\alpha}$ 2,6-sialyltransferase (ST6GalNAc I-VI), and ${\alpha}2,8-sialyltransferase$ (ST8Sia I-VI). Each of the sialyltransferase genes is differentially expressed in a tissue-, cell type-, and stage-specific manner. These enzymes differ in their substrate specificity and various biochemical parameters. However, enzymatic analysis conducted in vitro with recombinant enzyme revealed that one linkage can be synthesized by multiple enzymes. We present here an overview of structure and function of sialyltransferases performed by our group and co-works. Genomic structures and transcriptional regulation of two kinds of human sialyltransferase gene are also presented.

  • PDF

Engineering Human-like Sialylation in CHO Cells Producing hCTLA4-Ig by Overexpressing α2,6-Sialyltransferase (α2,6-Sialyltransferase 과발현을 통한 인간형 시알산 부가 hCTLA4-Ig 생산 CHO 세포주 제작)

  • Lim, Jin-Hyuk;Cha, Hyun-Myoung;Park, Heajin;Kim, Ha Hyung;Kim, Dong-Il
    • KSBB Journal
    • /
    • v.32 no.3
    • /
    • pp.193-198
    • /
    • 2017
  • Sialylation is important in producing therapeutic proteins such as antibody, cytokine and fusion protein. Thus, enhancement of sialylation is usually performed in CHO cell cultures. ${\alpha}2,6$-Sialyltransferase (ST), which plays a key role in the attachment of ${\alpha}2,6-sialic$ acid, is present in human cells but not in Chinese hamster ovary (CHO) cells. Overexpression of ${\alpha}2,6-ST$ can be used for enhancing the degree of sialylation and achieving human-like glycosylation. In this study, we constructed CHO cells producing human cytotoxic T-lymphocyte antigen4-immunoglobulin (hCTLA4-Ig) as well as ${\alpha}2,6-ST$. Transfected CHO cells were selected using G418 and stable cell line was established. Profiles of viable cell density and hCTLA4-Ig titer in an overexpressed cell line were similar to those of a wild-type cell line. It was confirmed that the total amount of sialic acid was increased and ${\alpha}2,6-sialic$ acid was attached to the terminal residues of N-glycan of hCTLA4-Ig by ESI-LC-MS. Compared to 100% of ${\alpha}2,3-sialic$ acid in wild type cells, 70.9% of total sialylated N-glycans were composed of ${\alpha}2,6-sialic$ acid in transfected cells. In conclusion, overexpression of ${\alpha}2,6-ST$ in CHO cells led to the increase of both the amount of total sialylated N-glycan and the content of ${\alpha}2,6-sialic$ acid, which is more resemble to human-like structure of glycosylation.

Alpha 1,3-Galactosyltransferase Deficiency in Miniature Pigs Increases Non-Gal Xenoantigens

  • Min, Gye-Sik;Park, Jong-Yi
    • Reproductive and Developmental Biology
    • /
    • v.35 no.4
    • /
    • pp.511-518
    • /
    • 2011
  • To avoid hyperacute rejection of xenografts, ${\alpha}1,3$-galactosyltransferase knock-out (GalT KO) pigs have been produced. In this study, we examined whether Sia-containing glycoconjugates are important as an immunogenic non-Gal epitope in the pig liver with disruption of ${\alpha}1,3$-galactosyltransferase gene. The target cells were then used as donor cells for somatic cell nuclear transfer (scNT). A total of 1,800 scNT embryos were transferred to 10 recipients. One recipient developed to term and naturally delivered two piglets. Real-time RT-PCR and glycosyltransferase activity showed that ${\alpha}2,3$-sialyltransferase (${\alpha}2,3ST$) and ${\alpha}2,6$-sialyltransferase (${\alpha}2,6ST$) in the heterozygote GalT KO liver have higher expression levels and activities compared to controls, respectively. According to lectin blotting, sialic acidcontaining glycoconjugate epitopes were also increased due to the decreasing of ${\alpha}$-Gal in heterozygote GalT KO liver, whereas GalNAc-containing glycoconjugate epitopes were decreased in heterozygote GalT KO liver compare to the control. Furthermore, the heterozygote GalT KO liver showed a higher Neu5Gc content than control. Taken together, these finding suggested that the deficiency of GalT gene in pigs resulted in increased production of Neu5Gc-bounded epitopes (H-D antigen) due to increase of ${\alpha}2,6$-sialyltransferase. Thus, this finding suggested that the deletion of CMAH gene to the GalT KO background is expected to further prolong xenograft survival.

Molecular Cloning and Substrate Specificity of Human NeuAc ${\alpha}$2,3Gal${\beta}$ 1,3GalNAc GalNac ${\alpha}$2,6-Sialyltransferase (hST6GalNac IV)

  • Lee, Young-Choon;Kim, Kyoung-Sook;Kim, Sang-Wan;Min, Kwan-Sik;Kim, Cheorl-Ho;Choo, Young-Kug
    • Journal of Life Science
    • /
    • v.11 no.1
    • /
    • pp.57-64
    • /
    • 2001
  • The cDNA encoding human NeuAc ${\alpha}$2,3Gal$\beta$ 1,3GalNAc GalNac ${\alpha}$2,6-Sialyltransferase (hST6GalNac IV) was isolated by screening of human fetal liver cDNA library with a DNA probe generated from the cDNA sequence of mouse ST6Gal NAc IV (mkST6GalNAc IV). The cDNA sequence included an open reading frame coding for 302 amino acids, and comparative analysis of this cDNA with mST6GalNAc IV showed that each sequence of the predicted coding region contains 88% and 85% identifies in nucleotide and amino acid levels, respecively. The primary structure of this enzyme suggested a putative domain structure, like that in other glycosyltransferases, consisting of a short N-terminal cytoplamic domain, a transmembrane domain and a large C-terminal active domain. This enzyme expressed in COS-7 cells echibited transferase activity toward NeuAc ${\alpha}$2,3Gal$\beta$ 1,3GalNAc, fetuin and GM1b, although the activity toward the later is very low, no significant activity being detected toward Gal${\beta}$ 1,3Gal NAc or asialofetuin, the other glycoprotein substrates tested. The $^{14}$ C-sialylated residue of fetuin sialylated by this enzyem with CMP-[$^{14}$C]NeuAc was sensitive to treatment with ${\alpha}$2,8-specific sialidase of Vibrio cholerae but resistant to treatment with ${\alpha}$2,3-specific sialidase (NaNase I), and ${\alpha}$2,3- and ${\alpha}$2,8-specific sialidase of Newcastle disease virus. These results clearly indicated that the expressed enzyme is a type of GalNAc ${\alpha}$2,6-sialyltransferase like mST6GalNAc IV, which requires sialic acid residues linked to Gal${\beta}$1,3GalNAc-residues for its activity.

  • PDF

Enhanced Sialylation of Recombinant Erythropoietin in CHO Cells by Human Glycosyltransferase Expression

  • Jeong, Yeon-Tae;Choi, One;Lim, Hye-Rim;Son, Young-Dok;Kim, Hong-Jin;Kim, Jung-Hoe
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.12
    • /
    • pp.1945-1952
    • /
    • 2008
  • Sialylation, the attachment of sialic acid residues to a protein, can affect the biological activity and in vivo circulatory half-life of glycoproteins. Human ${\alpha}2$,3-sialyltransferase (${\alpha}2$,3-ST) and ${\beta}1$,4-galactosyltransferase (${\beta}1$,4-GT) are responsible for terminal sialylation and galactosylation, respectively. Enhanced sialylation of human erythropoietin (EPO) by the expression of ${\alpha}2$,3-ST and ${\beta}1$,4-GT was achieved using recombinant Chinese hamster ovary (CHO) cells (EC1). The sialic acid content and sialylation of N-glycans were evaluated by HPLC. When ${\alpha}2$,3-ST was expressed in CHO cells (EC1-ST2), the sialic acid content (moles of sialic acid/mole of EPO) increased from 6.7 to 7.5. In addition, the amount of trisialylated glycans increased from 17.3% to 26.1 %. When ${\alpha}2$,3-ST and ${\beta}1$,4-GT were coexpressed in CHO cells (EC1-GTST15), the degree of sialylation was greater than that in EC1-ST2 cells. In the case of EC1-GTST15 cells, the sialic acid content increased to 8.2 and the proportion of trisialylated glycans was markedly increased from 17.3% to 35.5%. Interestingly, the amount of asialoglycans decreased only in the case of GTST15 cells (21.4% to 14.2%). These results show that coexpression of ${\alpha}2$,3-ST and ${\beta}1$,4-GT is more effective than the expression of ${\alpha}2$,3-ST alone. Coexpression of ${\alpha}2$,3-ST and ${\beta}1$,4-GT did not affect CHO cell growth and metabolism or EPO production. Thus, coexpression of ${\alpha}2$,3-ST and ${\beta}1$,4-GT may be beneficial for producing therapeutic glycoproteins with enhanced sialylation in CHO cells.

Inhibitory Effects of Oriental Medicinal Herbs on Enzymatic Activity of Sialyltransferases (ST3Gal I and ST6Gal I) Associated with Cancer

  • Kim, Kyoung-Sook;Kim, Cheorl-Ho;Kim, June-Ki;Lee, Young-Choon
    • Journal of Life Science
    • /
    • v.10 no.1
    • /
    • pp.51-56
    • /
    • 2000
  • In many cases of human cancer, the appearance of hypersialylated glycan structures is related to a precise stage of the disease ; this may depend on the elebated sialyltransferase activity during carcinogenesis. The aim of this study was to investigate the inhibitory effects of Oriental medicinal herbs on enzymatic activities of two kinds ofsialyltransferase, Gal $\beta$ 1,3GalNAc$\alpha$2,3-sialyltransferase(ST3Gal I) and Gal $\beta$ 1,4GlcNAc $\alpha$2,6-sialyltransterases(ST6Gal I), which are well known as glycosyltransterases associated with cancer. The aqueous extracts of Scutellaria Baicalensis Georgi, Coptidis Rhizoma, Glycyrrhiza urlensis Fisch, Bupleuri Radix and Platycodi Radix were prepared and tested, respectively. At concentration of 100$\mu$g, Glycyrrhiza uralensis Fisch showed the highest inhibitory effects(about 42% and 57%, respectively) on ST3Gal Iand ST6Gal Iactivities. ST3GAl I was inhibited about 23% by Scutellaria baicalensi G댁햐, but not by the other samples, whereas ST6Gal I was inhibited about 20% and 40%,respectively, by Scutellaria baicalensis Georgi and Bupleuri Radix. All inhibitory effects were obtained in a concentration-dependent manner.

Increased α2-6 sialylation of endometrial cells contributes to the development of endometriosis

  • Choi, Hee-Jin;Chung, Tae-Wook;Choi, Hee-Jung;Han, Jung Ho;Choi, Jung-Hye;Kim, Cheorl-Ho;Ha, Ki-Tae
    • Experimental and Molecular Medicine
    • /
    • v.50 no.12
    • /
    • pp.9.1-9.12
    • /
    • 2018
  • Endometriosis is a disease characterized by implants of endometrial tissue outside the uterine cavity and is strongly associated with infertility. Focal adhesion of endometrial tissue to the peritoneum is an indication of incipient endometriosis. In this study, we examined the effect of various cytokines that are known to be involved in the pathology of endometriosis on endometrial cell adhesion. Among the investigated cytokines, transforming growth factor-${\beta}1$ ($TGF-{\beta}1$) increased adhesion of endometrial cells to the mesothelium through induction of ${\alpha}2-6$ sialylation. The expression levels of ${\beta}$-galactoside ${\alpha}2-6$ sialyltransferase (ST6Gal) 1 and ST6Gal2 were increased through activation of $TGF-{\beta}RI/SMAD2/3$ signaling in endometrial cells. In addition, we discovered that terminal sialic acid glycan epitopes of endometrial cells engage with sialic acid-binding immunoglobulin-like lectin-9 expressed on mesothelial cell surfaces. Interestingly, in an in vivo mouse endometriosis model, inhibition of endogenous sialic acid binding by a $NeuAc{\alpha}2-6Gal{\beta}1$-4GlcNAc injection diminished $TGF-{\beta}1$-induced formation of endometriosis lesions. Based on these results, we suggest that increased sialylation of endometrial cells by $TGF-{\beta}1$ promotes the attachment of endometrium to the peritoneum, encouraging endometriosis outbreaks.

ST6Gal-I Predicts Postoperative Clinical Outcome for Patients with Localized Clear-cell Renal Cell Carcinoma

  • Liu, Hai-Ou;Wu, Qian;Liu, Wei-Si;Liu, Yi-Dong;Fu, Qiang;Zhang, Wei-Juan;Xu, Le;Xu, Jie-Jie
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.23
    • /
    • pp.10217-10223
    • /
    • 2015
  • Hyperactivated ${\alpha}2$-6-sialylation on N-glycans due to overexpression of the Golgi enzyme ${\beta}$-galactoside: ${\alpha}2$-6-sialyltransferase (ST6Gal-I) often correlates with cancer progression, metastasis, and poor prognosis. This study was aimed to determine the association between ST6Gal-I expression and the risk of recurrence and survival of patients with localized clear-cell renal cell carcinoma (ccRCC) following surgery. We retrospectively enrolled 391 patients (265 in training cohort and 126 in validation cohort) with localized ccRCC underwent nephrectomy at a single center. Tissue microarrays were constructed for immunostaining of ST6Gal-I. Prognostic value and clinical outcomes were evaluated. High ST6Gal-I expression was associated with Fuhrman grade (p<0.001 and p=0.016, respectively) and the University of California Los-Angeles Integrated Staging System (UISS) score (p=0.004 and p=0.017, respectively) in both cohorts. Patients with high ST6Gal-I expression had significantly worse overall survival (OS) (p<0.001 and p<0.001, respectively) and recurrence free survival (RFS) (p<0.001 and p=0.002, respectively) than those with low expression in both cohorts. On multivariate analysis, ST6Gal-I expression remained associated with OS and RFS even after adjusting for the UISS score. Stratified analysis suggested that the association is more pronounced among patients with low and intermediate-risk disease defined by the UISS score. High ST6Gal-I expression is a potential independent adverse predictor of survival and recurrence in ccRCC patients, and the prognostic value is most prominent in those with low and intermediate-risk disease defined by the UISS score.