Browse > Article

Alpha 1,3-Galactosyltransferase Deficiency in Miniature Pigs Increases Non-Gal Xenoantigens  

Min, Gye-Sik (Department of Pharmaceutical Engineering, Gyeongnam National University of Science & Technology)
Park, Jong-Yi (Department of Animal Biotechnology, Konkuk University)
Publication Information
Abstract
To avoid hyperacute rejection of xenografts, ${\alpha}1,3$-galactosyltransferase knock-out (GalT KO) pigs have been produced. In this study, we examined whether Sia-containing glycoconjugates are important as an immunogenic non-Gal epitope in the pig liver with disruption of ${\alpha}1,3$-galactosyltransferase gene. The target cells were then used as donor cells for somatic cell nuclear transfer (scNT). A total of 1,800 scNT embryos were transferred to 10 recipients. One recipient developed to term and naturally delivered two piglets. Real-time RT-PCR and glycosyltransferase activity showed that ${\alpha}2,3$-sialyltransferase (${\alpha}2,3ST$) and ${\alpha}2,6$-sialyltransferase (${\alpha}2,6ST$) in the heterozygote GalT KO liver have higher expression levels and activities compared to controls, respectively. According to lectin blotting, sialic acidcontaining glycoconjugate epitopes were also increased due to the decreasing of ${\alpha}$-Gal in heterozygote GalT KO liver, whereas GalNAc-containing glycoconjugate epitopes were decreased in heterozygote GalT KO liver compare to the control. Furthermore, the heterozygote GalT KO liver showed a higher Neu5Gc content than control. Taken together, these finding suggested that the deficiency of GalT gene in pigs resulted in increased production of Neu5Gc-bounded epitopes (H-D antigen) due to increase of ${\alpha}2,6$-sialyltransferase. Thus, this finding suggested that the deletion of CMAH gene to the GalT KO background is expected to further prolong xenograft survival.
Keywords
${\alpha}$-Gal; H-D antigens; Tn-antigen; Xenotransplantation; Pig; GalT KO; Somatic cell nuclear transfer;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Diswall M, Angstrom J, Karlsson H, Phelps CJ, Ayares D, Teneberg S, Breimer ME. (2010): Structural characterization of alpha1,3-galactosyltransferase knockout pig heart and kidney glycolipids and their reactivity with human and baboon antibodies. Xenotransplantation 17:48-60.   DOI
2 Shimizu A, Hisashi Y, Kuwaki K, Tseng YL, Dor FJ, Houser SL, Robson SC, Schuurman HJ, Cooper DK, Sachs DH, Yamada K, Colvin RB (2008): Thrombotic microangiopathy associated with humoral rejection of cardiac xenografts from alpha1,3-galactosyltransferase gene-knockout pigs in baboons. Am J Pathol 172:1471-1481.   DOI   ScienceOn
3 Tanemura M, Miyagawa S, Koyota S, Koma M, Matsuda H, Tsuji S, Shirakura R, Taniguchi N (1998): Reduction of the major swine xenoantigen, the alpha- galactosyl epitope by transfection of the alpha- 2,3-sialyltransferase gene. J Biol Chem 273:16421- 16425.   DOI
4 Traving C, Schauer R (1998): Structure, function and metabolism of sialic acids. Cell Mol Life Sci 54:1330-1349.   DOI   ScienceOn
5 Varki A (1992): Diversity in the sialic acids. Glycobiology 2:25-40.   DOI   ScienceOn
6 Ezzelarab M, Ayares D, Cooper DK (2005): Carbohydrates in xenotransplantation. Immunol Cell Biol 83:396-404.   DOI   ScienceOn
7 Galili U (2001): The alpha-Gal epitope (Galalpha1-3 Galbeta1-4GlcNAc-R) in xenotransplantation. Biochimie 83:557-563.   DOI   ScienceOn
8 Galili U, Shohet SB, Kobrin E, Stults CL, Macher BA (1988): Man, apes, and Old World monkeys differ from other mammals in the expression of alpha- galactosyl epitopes on nucleated cells. J Biol Chem 263:17755-17762.
9 Good AH, Cooper DK, Malcolm AJ, Ippolito RM, Koren E, Neethling FA, Ye Y, Zuhdi N, Lamontagne LR (1992): Identification of carbohydrate structures that bind human antiporcine antibodies: implications for discordant xenografting in humans. Transplant Proc 24:559-562.
10 Hamamoto T, Kurosawa N, Lee YC, Tsuji S (1995): Donor substrate specificities of Gal beta 1,4GlcNAc alpha 2,6-sialyltransferase and Gal beta 1,3GalNAc alpha 2,3-sialyltransferase: comparison of N-acetyl and N-glycolylneuraminic acids. Biochim Biophys Acta 1244:223-228.   DOI   ScienceOn
11 Harduin-Lepers A, Mollicone R, Delannoy P, Oriol R (2005): The animal sialyltransferases and sialyltransferase- related genes: a phylogenetic approach. Glycobiology 15:805-817.   DOI   ScienceOn
12 Dai Y, Vaught TD, Boone J, Chen SH, Phelps CJ, Ball S, Monahan JA, Jobst PM, McCreath KJ, Lamborn AE, Cowell-Lucero JL, Wells KD, Colman A, Polejaeva IA, Ayares DL (2002): Targeted disruption of the alpha1,3-galactosyltransferase gene in cloned pigs. Nat Biotechnol 20:251-255.   DOI   ScienceOn
13 Ahn KS, Kim YJ, Kim M, Lee BH, Heo SY, Kang MJ, Kang YK, Lee JW, Lee KK, Kim JH, Nho WG, Hwang SS, Woo JS, Park JK, Park SB, Shim H (2011): Resurrection of an alpha-1,3-galactosyltransferase gene-targeted miniature pig by recloning using postmortem ear skin fibroblasts. Theriogenology 75:933-939.   DOI   ScienceOn
14 Byrne GW, Stalboerger PG, Davila E, Heppelmann CJ, Gazi MH, McGregor HC, LaBreche PT, Davies WR, Rao VP, Oi K, Tazelaar HD, Logan JS, McGregor CG (2008): Proteomic identification of non-Gal antibody targets after pig-to-primate cardiac xenotransplantation. Xenotransplantation 15:268-276.   DOI   ScienceOn
15 Cooper DK, Koren E, Oriol R (1993): Genetically engineered pigs. Lancet 342:682-683.   DOI   ScienceOn
16 Park JY, Park MR, Hwang KC, Chung JS, Bui HT, Kim T, Cho SK, Kim JH, Hwang S, Park SB, Nguyen VT, Kim JH (2011): Comparative gene expression analysis of somatic cell nuclear transfer-derived cloned pigs with normal and abnormal umbilical cords. Biol Reprod 84:189-199.   DOI   ScienceOn
17 Malykh YN, Shaw L, Schauer R (1998): The role of CMP-N-acetylneuraminic acid hydroxylase in determining the level of N-glycolylneuraminic acid in porcine tissues. Glycoconj J 15:885-893.   DOI   ScienceOn
18 Menoret S, Plat M, Blancho G, Martinat-Botte F, Bernard P, Karam G, Tesson L, Renaudin K, Guillouet P, Weill B, Chereau C, Houdebine LM, Soulillou JP, Terqui M, Anegon I (2004): Characterization of human CD55 and CD59 transgenic pigs and kidney xenotransplantation in the pig-to-baboon combination. Transplantation 77:1468-1471.   DOI   ScienceOn
19 Miyagawa S, Takeishi S, Yamamoto A, Ikeda K, Matsunari H, Yamada M, Okabe M, Miyoshi E, Fukuzawa M, Nagashima H (2010): Survey of glycoantigens in cells from alpha1-3galactosyltransferase knockout pig using a lectin microarray. Xenotransplantation 17:61-70.   DOI
20 Park MR, Cho SK, Lee SY, Choi YJ, Park JY, Kwon DN, Son WJ, Paik SS, Kim T, Han YM, Kim JH (2005): A rare and often unrecognized cerebromeningitis and hemodynamic disorder: a major cause of sudden death in somatic cell cloned piglets. Proteomics 5:1928-1939.   DOI   ScienceOn
21 Ramirez P, Montoya MJ, Rios A, Garcia Palenciano C, Majado M, Chavez R, Munoz A, Fernandez OM, Sanchez A, Segura B, Sansano T, Acosta F, Robles R, Sanchez F, Fuente T, Cascales P, Gonzalez F, Ruiz D, Martinez L, Pons JA, Rodriguez JI, Yelamos J, Cowan P, d'Apice A, Parrilla P (2005): Prevention of hyperacute rejection in a model of orthotopic liver xenotransplantation from pig to baboon using polytransgenic pig livers (CD55, CD59, and H-transferase). Transplant Proc 37:4103-4106.   DOI   ScienceOn
22 Shibuya N, Goldstein IJ, Broekaert WF, Nsimba- Lubaki M, Peeters B, Peumans WJ (1987): The elderberry (Sambucus nigra L.) bark lectin recognizes the Neu5Ac(alpha 2-6)Gal/GalNAc sequence. J Biol Chem 262:1596-1601.
23 Haseley SR, Talaga P, Kamerling JP, Vliegenthart JF (1999): Characterization of the carbohydrate binding specificity and kinetic parameters of lectins by using surface plasmon resonance. Anal Biochem 274: 203-210.   DOI   ScienceOn
24 Imberty A, Gautier C, Lescar J, Perez S, Wyns L, Loris R (2000): An unusual carbohydrate binding site revealed by the structures of two Maackia amurensis lectins complexed with sialic acid-containing oligosaccharides. J Biol Chem 275:17541-17548.   DOI
25 Kelm S, Schauer R (1997): Sialic acids in molecular and cellular interactions. Int Rev Cytol 175:137-240.
26 Kim YG, Gil GC, Harvey DJ, Kim BG (2008): Structural analysis of alpha-Gal and new non-Gal carbohydrate epitopes from specific pathogen-free miniature pig kidney. Proteomics 8:2596-2610.   DOI   ScienceOn
27 Malykh YN, King TP, Logan E, Kelly D, Schauer R, Shaw L (2003): Regulation of N-glycolylneuraminic acid biosynthesis in developing pig small intestine. Biochem J 370:601-607.   DOI   ScienceOn
28 Kuwaki K, Tseng YL, Dor FJ, Shimizu A, Houser SL, Sanderson TM, Lancos CJ, Prabharasuth DD, Cheng J, Moran K, Hisashi Y, Mueller N, Yamada K, Greenstein JL, Hawley RJ, Patience C, Awwad M, Fishman JA, Robson SC, Schuurman HJ, Sachs DH, Cooper DK (2005): Heart transplantation in baboons using alpha 1,3-galactosyltransferase gene-knockout pigs as donors: initial experience. Nat Med 11:29- 31.   DOI   ScienceOn
29 Lai L, Kolber-Simonds D, Park KW, Cheong HT, Greenstein JL, Im GS, Samuel M, Bonk A, Rieke A, Day BN, Murphy CN, Carter DB, Hawley RJ, Prather RS (2002): Production of alpha-1,3-galactosyltransferase knockout pigs by nuclear transfer cloning. Science 295:1089-1092.   DOI   ScienceOn