• 제목/요약/키워드: ${\alpha}-Cyclodextrin$

검색결과 135건 처리시간 0.024초

전자코를 이용한 헥사날과 싸이클로덱스트린의 결합 분석 (Analysis for Cyclodextrins to Entrap with Hexanal using Electronic Nose)

  • 윤예리;노봉수
    • 한국식품과학회지
    • /
    • 제39권1호
    • /
    • pp.1-6
    • /
    • 2007
  • 이취성분의 하나인 헥사날이 CD 종류, CD 농도, 저장기간에 따라 결합하는 정도를 전자코를 이용하여 분석하였다. 여러 종류의 CD 중에서 ${\alpha}-CD$가 헥사날과 가장 많은 양이 반응하면서 CD복합체를 이루었다. CD의 농도가 증가할수록 잔존하는 헥사날의 양이 감소하였는데 5% ${\beta}-CD$ 첨가시 86%의 헥사날이 감소하여 헥사날-CD복합체를 이루고 있음을 보여 주었다. CD복합체를 이룬 후 저장초기 상태에서는 헥사날의 양 변화에 별다른 차이가 없었지만 저장일이 지남에 따라 헥사날의 양이 점차 감소하였다. 또한 저장기간이 지남에 따라 자연 휘발되는 양보다는 CD와의 결합에 의해 헥사날의 양의 감소효과가 더 큰 것을 알 수 있었으며 이런 정도를 전자코로 분석할 수 있었다.

Immobilization of MTBE using cyclodextrins

  • Baek, Ki-Tae;Yang, Ji-Won
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2003년도 총회 및 춘계학술발표회
    • /
    • pp.120-123
    • /
    • 2003
  • Immobilization behavior of methyl tert-butyl ether (MTBE) by various cyclodextrins(CDs) was studied to investigate the feasibility of MTBE removal using cyclodexrins. Even though MTBE has relatively low hydrophobicity and higher polarity compared to other organics, it was effectively immobilized by CDs. The immobilization isotherms was shown as a type of Freundlich isotherms, and the immobilization capacity of -CDs was the largest among natural COs. The initial apparent association constant for MTBE-CD complex follows the order : gamma = beta > methyl-beta > hydroxypropyl beta > alpha. These differences of the constants are related to the size of MTBE and CDs. The size of beta-CD and gamma-CD is large to encapsulate MTBE molecule into the cavity, which that of alpha-CB is too small to encapsulate MTBE.

  • PDF

${\gamma}$-cyclodextrin으로 포접한 홍삼추출물의 관능평가 및 Rg1, Rb1의 생체이용율 (Sensory Evaluation and Bioavailability of Red Ginseng Extract(Rg1, Rb1) by Complexation with ${\gamma}$-Cyclodextrin)

  • 이승현;박지호;조남석;유희종;유성균;조정원;김동출;김영희;김기호
    • 한국식품과학회지
    • /
    • 제41권1호
    • /
    • pp.106-110
    • /
    • 2009
  • 홍삼추출물(RGE)의 쓴 맛을 개선하기 위해서 ${\alpha}-,\;{\beta}-,\;{\gamma}$-CD을 이용해서 RGE의 포접화합물을 제조하여, 관능평가를 통해서 RGE-${\gamma}$-CD에 의한 쓴 맛 개선효과가 가장 큰 것을 확인하였다. RGE와 ${\gamma}$-CD의 비율에 따라서 쓴 맛은 선형적으로 감소하지만, RGE 고유의 향 조차도 감소하기 때문에, RGE 대비 10%의 ${\gamma}$-CD를 첨가하여 포접화합물을 형성할 때 쓴 맛은 RGE 대비 78% 정도 감소하였고, 홍삼의 향은 62% 정도를 유지함으로써 기호도면에서 우수한 결과를 얻었다. SD계 흰쥐에 RGE, RGE-${\gamma}$-CD10의 제제를 총 사포닌의 투여량이 제제간에 동일하도록 투여한 후, 혈장 중 RGE에 들어있는 주요한 성분으로 알려져 있는 ginsenoside Rg1, Rb1을 지표물질로 설정하여 전 농도를 측정하여 두 제제간의 AUC를 비교한 결과, Rg1의 경우, RGE 제제 투여 후의 평균값이 $13.11{\mu}g{\cdot}hr/mL$, RGE-${\gamma}$-CD10 투여 후의 평균값은 $12.04{\mu}g{\cdot}hr/mL$로 유의적인 차이는 없었다. 한편, Rb1의 경우, RGE 제제로서 투여하였을 때의 AUC 평균값이 $25.84{\mu}g{\cdot}hr/mL$, RGE-${\gamma}$-CD10 투여 후의 평균값은 $81.48{\mu}g{\cdot}hr/mL$로 3배 이상 높아짐을 알 수 있었다. 본 연구에 의해 ${\gamma}$-CD로 RGE를 포접했을 경우 쓴 맛이 감소하고, ginsenoside Rb1의 생체이용율이 증가하여 RGE를 그대로 섭취할 경우보다 포접화합물로 섭취 시에 더 유용함을 확인하였다.

Critical Factors to High Thermostability of an ${\alpha}$-Amylase from Hyperthermophilic Archaeon Thermococcus onnurineus NA1

  • Lim, Jae-Kyu;Lee, Hyun-Sook;Kim, Yun-Jae;Bae, Seung-Seob;Jeon, Jeong-Ho;Kang, Sung-Gyun;Lee, Jung-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • 제17권8호
    • /
    • pp.1242-1248
    • /
    • 2007
  • Genomic analysis of a hyperthermophilic archaeon, Thermococcus onnurineus NA1 [1], revealed the presence of an open reading frame consisting of 1,377 bp similar to ${\alpha}$-amylases from Thermococcales, encoding a 458-residue polypeptide containing a putative 25-residue signal peptide. The mature form of the ${\alpha}$-amylase was cloned and the recombinant enzyme was characterized. The optimum activity of the enzyme occurred at $80^{\circ}C$ and pH 5.5. The enzyme showed a liquefying activity, hydrolyzing maltooligosaccharides, amylopectin, and starch to produce mainly maltose (G2) to maltoheptaose (G7), but not pullulan and cyclodextrin. Surprisingly, the enzyme was not highly thermostable, with half-life ($t_{1/2}$) values of 10 min at $90^{\circ}C$, despite the high similarity to ${\alpha}$-amylases from Pyrococcus. Factors affecting the thermostability were considered to enhance the thermo stability. The presence of $Ca^{2+}$ seemed to be critical, significantly changing $t_{1/2}$ at $90^{\circ}C$ to 153 min by the addition of 0.5 mM $Ca^{2+}$. On the other hand, the thermostability was not enhanced by the addition of $Zn^{2+}$ or other divalent metals, irrespective of the concentration. The mutagenetic study showed that the recovery of zinc-binding residues (His175 and Cys189) enhanced the thermo stability, indicating that the residues involved in metal binding is very critical for the thermostability.

Molecular Cloning and Enzymatic Characterization of Cyclomaltodextrinase from Hyperthermophilic Archaeon Thermococcus sp. CL1

  • Lee, Jae-Eun;Kim, In-Hwan;Jung, Jong-Hyun;Seo, Dong-Ho;Kang, Sung-Gyun;Holden, James F.;Cha, Jaeho;Park, Cheon-Seok
    • Journal of Microbiology and Biotechnology
    • /
    • 제23권8호
    • /
    • pp.1060-1069
    • /
    • 2013
  • Genome organization near cyclomaltodextrinases (CDases) was analyzed and compared for four different hyperthermophilic archaea: Thermococcus, Pyrococcus, Staphylothermus, and Thermofilum. A gene (CL1_0884) encoding a putative CDase from Thermococcus sp. CL1 (tccd) was cloned and expressed in Escherichia coli. TcCD was confirmed to be highly thermostable, with optimal activity at $85^{\circ}C$. The melting temperature of TcCD was determined to be $93^{\circ}C$ by both differential scanning calorimetry and differential scanning fluorimetry. A size-exclusion chromatography experiment showed that TcCD exists as a monomer. TcCD preferentially hydrolyzed ${\alpha}$-cyclodextrin (${\alpha}$-CD), and at the initial stage catalyzed a ring-opening reaction by cleaving one ${\alpha}$-1,4-glycosidic linkage of the CD ring to produce the corresponding single maltooligosaccharide. Furthermore, TcCD could hydrolyze branched CDs (G1-${\alpha}$-CD, G1-${\beta}$-CD, and G2-${\beta}$-CD) to yield significant amounts (45%, 40%, and 46%) of isomaltooligosaccharides (panose and $6^2$-${\alpha}$-maltosylmaltose) in addition to glucose and maltose. This enzyme is one of the most thermostable maltogenic amylases reported, and might be of potential value in the production of isomaltooligosaccharides in the food industry.

2-Bromoacetyltriphenylene 유도체화제를 이용한 카르복실기 함유성분의 분석법 (I) - 프로스타글란딘 $E_2$$F_2{\alpha}$ 혼합물의 HPLC에 의한 분리정량 (UV-HPLC Determination of Carbowyl Group Using 2-Bromoacetyltriphenylene as a Pre-labeling Reagent - The isolative determination of prostaglandin $E_2$ and $F_2{\alpha}$ by HPLC)

  • 이왕규;정해수;김박광
    • 약학회지
    • /
    • 제30권6호
    • /
    • pp.311-316
    • /
    • 1986
  • A new UV labeling reagent was developed and used in HPLC for the determination of prostaglandin $E_2$ which have weak UV light-absorbing property. This reagent, 2-bromoacetyltriphenylene, was synthesized by the bromination of 2-acetyltriphenylene which was obtained from triphenylene by Friedel-Crafts reaction. The wave length maximum (${\lambda}_{max}^{CH_3CN}$ of this reagent was 268nm. Prostaglandin E$_2$ was extracted from prostaglandin E$_2$-$\beta$-cyclodextrin using a Sep-pak $C_{18}$ cartridge. The prostaglandin E$_2$ was labeled with 2-bromoacetyl-triphenylene in aectonitrite using 18-crown-6-ether as catalyst. Derivatized prostaglandins were separated on a reversed-phase column (Radial-pak) $\mu$-Bondapak $C_{18}$ using acetonitrile: water=60:40 as mobile phase. The effluent was monitored by UV detector at 254nm filter kit. Linearity of calibration curve was obtained between 30ng and 140ng, and the lower limit of detection was 5ng.

  • PDF

Formation of A L-Ascorbic Acid 2-o-$\alpha$-glucoside during Kimchi Fermentation

  • Jun, Hong-Ki;Bae, Kyung-Mi;Kim, Young-Hee;Cheigh, Hong-Sik
    • Preventive Nutrition and Food Science
    • /
    • 제3권3호
    • /
    • pp.225-229
    • /
    • 1998
  • Formation of a L-Ascorbic Acid 2-O-$\alpha$-glucoside(AA-2G) is a chemically stable dervative of asocrbate that shows a vitamin C acitivity in vitro as well as in vivo. We studied whether ascorbic acid(AA) and AA-2G are formed in baechu kimchi during fermentation at 4 $^{\circ}C$ or 18$^{\circ}C$. To determine the formation of AA and AA-2G during fermentation of kimchi, wheat flour (as a carbhydrate source) added baechu kimchi (WBK) and control baechu kimchi(CBK) were prepared and fermented at 4 $^{\circ}C$ or 18 $^{\circ}C$. A substance like AA-2G was detected by HPLC from WBK fermented at 18 $^{\circ}C$ for 26 days in fall season and confirmed later to be the AA-2G showing distinctive characteristics of heat stability and resistance to ascrobate oxidase catalase. However, none of the kimchi formed AA-2G when the kimchi were fermented under a different temperature condition such as 4 $^{\circ}C$ instead of 18 $^{\circ}C$ or a different season such as summer instead of fall even if they were fermented at 18 $^{\circ}C$. The pH of kimchi was decreased rapidly during the first 3 days. and then decreased slowly after 4 days when the kimchi were fermented at 18 $^{\circ}C$. However, there were slight changes of pH in both CBK and WBK feremented at 4$^{\circ}C$ for 30 $^{\circ}C$ days. Therefore, the AA-2G -forming activity in kimchi seems to be correlated with the formentation temperature, the microorganisms involved in kimchi fermentation and a suitable glycosyl donor for AA as provided by wheat flour in this study.

  • PDF

Bacillus licheniformis의 내열성 $\alpha$-amylase 및 maltogenic amylase 유전자의 분리와 그 효소 특성 (Molecular Cloning of Thermostable $\alpha$-Amylase and Maltogenci Amylase Genes from Bacillus licheniformis and Characterization of their Enzymatic Properties)

  • 김인철
    • 한국미생물학회:학술대회논문집
    • /
    • 한국미생물학회 1991년도 춘계학술발표대회 논문집
    • /
    • pp.225-236
    • /
    • 1991
  • The genes encoding the thermostable $\alpha$-amylase and maltogenic amylase from Bacillus lichenciformis were cloned and expressed in E. coli. The recombinant plasmid pTA322 was found to contain a 3.1kb EcoRI genomic DNA fragment of the thermostable $\alpha$-amylase. The cloned $\alpha$-amylase was compared with the B. licheniformis native $\alpha$-amylase. Both $\alpha$-amylase have the same optimal temperature of $70^{\circ}C$ and are stable in the pH range of 6 and 9. The complete nucleotide sequences of the thermostable $\alpha$-amylase gene were determined. It was composed of one open reading rame of 1,536 bp. Start and stop codons are ATG and TAG. From the amino acid sequence deduced from the nucleotide sequence, the cloned thermostable $\alpha$-amylase is composed of 483 amino acid residues and its molecular weight is 55,200 daltons. The content of guanine and cytosine is $47.46mol\%$ and that of third base codon was $53_41mol\%$. The recombinant plasmid, pIJ322 encoding the maltogenic amylase contains a 3.5kb EcoRI-BamHI genomic DNA fragment. The optimal reaction temperature and pH of the maltogenci amylase were $50^{\circ}C$ and 7, respectively. The maltogenic amylase was capable of hydrolysing pullulan, starch and cyclodextrin to produce maltose from starch and panose from pullulan. The maltogenic amylase also showed the transferring activity. The maltogenic amylase gene is composed of one open reading frame of 1,734bp. Start and stop codons are ATG and ATG. At 2bp upstream from start codon, the nucleotide sequence AAAGGGGGAA seems to be the ribosome-binding site(RBS, Shine-Dalgarno sequence). A putative promoter(-35 and-10 regions) was found to be GTTAACA and TGATAAT. From deduced amino acid sequence from the nucleotide srquence, this enzyme was comosed of 578 amino acid residues and its molecular weight was 77,233 daltons. The content of guanine and cytosine was $48.1mol\%$. The new recombinant plasmid, pTMA322 constructed by inserting the thermostable $\alpha$-amylase gene in the EcoRI site of pIJ322 to produce both the thermostable $\alpha$-amylase and the maltogenic amylase were expressed in the E. coli. The two enzymes expressed from E. coli containing pTMA322 was reacted with the $15\%$ starch slurry at $40^{\circ}C$ for 24hours. The distribution of the branched oligosaccharides produced by the single-step process was of the ratio 50 : 50 between small oligosaccharide up DP3 and large oligosaccharide above DP3.

  • PDF

Expression of the Promoter for the Maltogenic Amylase Gene in Bacillus subtilis 168

  • Kim Do-Yeon;Cha Choon-Hwan;Oh Wan-Seok;Yoon Young-Jun;Kim Jung-Wan
    • Journal of Microbiology
    • /
    • 제42권4호
    • /
    • pp.319-327
    • /
    • 2004
  • An additional amylase, besides the typical $\alpha-amylase,$ was detected for the first time in the cytoplasm of B. subtilis SUH4-2, an isolate from Korean soil. The corresponding gene (bbmA) encoded a malto­genic amylase (MAase) and its sequence was almost identical to the yvdF gene of B. subtilis 168, whose function was unknown. Southern blot analysis using bbmA as the probe indicated that this gene was ubiquitous among various B. subtilis strains. In an effort to understand the physiological function of the bbmA gene in B. subtilis, the expression pattern of the gene was monitored by measuring the $\beta-galactosidase$ activity produced from the bbmA promoter fused to the amino terminus of the lacZ struc­tural gene, which was then integrated into the amyE locus on the B. subtilis 168 chromosome. The pro­moter was induced during the mid-log phase and fully expressed at the early stationary phase in defined media containing $\beta--cyclodextrin\;(\beta-CD),$ maltose, or starch. On the other hand, it was kept repressed in the presence of glucose, fructose, sucrose, or glycerol, suggesting that catabolite repression might be involved in the expression of the gene. Production of the $\beta-CD$ hydrolyzing activity was impaired by the spo0A mutation in B. subtilis 168, indicating the involvement of an additional regu­latory system exerting control on the promoter. Inactivation of yvdF resulted in a significant decrease of the $\beta-CD$ hydrolyzing activity, if not all. This result implied the presence of an additional enzyme(s) that is capable of hydrolyzing $\beta-CD$ in B. subtilis 168. Based on the results, MAase encoded by bbmA is likely to be involved in maltose and $\beta-CD$ utilization when other sugars, which are readily usable as an energy source, are not available during the stationary phase.

Purification and Characterization of Two Extracellular Glucoamylase Isozymes from Lipomyces kononenkoae CBS 5608 Mutant

  • Chun, Soon-Bai;Bai, Suk;Im, Suhn-Young;Choi, Won-Ki;Lee, Jin-Jong
    • BMB Reports
    • /
    • 제28권5호
    • /
    • pp.375-381
    • /
    • 1995
  • Two forms of glucoamylase (GI and GII) from starch-grown Lipomyces kononenkoae CBS 5608 mutant were purified to apparent homogeneity by means of ultrafiltration, Sephacryl S-200 gel filtration and DEAE Sephadex A-50 chromatography. The apparent molecular weight was calculated as ca. 150 kDa for GI and ca. 128 kDa for GII, respectively. Both enzymes were glycoproteins with isoelectric points of 5.6 (GI) and 5.4 (GII). They had a pH optimun of 4.5 and were stable from pH 5 to 8. The temperature optimum for both enzymes was $60^{\circ}C$, but they were rapidly inactivated above $70^{\circ}C$. The $K_m$ values toward starch were estimated to be 6.57 mg per ml for GI and 4.52 mg per ml for GII, and the $V_{max}$ values were 16.28 ${\mu}M$ per mg for GI and 32.25 ${\mu}M$ per mg for GII, respectively. The $K_m$ and $V_{max}$ values of GII for ${\alpha}-$ or ${\beta}-cyclodextrin$ were estimated to be 0.15 mg per ml and 2.0 mg per ml, respectively ($K_m$) and 1.02 ${\mu}M$ per mg or 1.02 ${\mu}M$ per mg, respectively ($V_{max}$). Neither enzyme exhibited pullulanase activity but they released only glucose from starch or cyclodextrin. Amino acid analysis indicated that both glucoamylases were enriched in proline and acid amino acids. Glucoamylase GII strongly cross-reacted with a monoclonal antibody raised against GI enzymes, and the two enzymes shared very similar amino acid composition. Western blot analysis indicated that L. kononenkoae CBS 5608 mutant produced two forms of glucoamylase on starch, and that synthesis of them was subject to glucose repression.

  • PDF