Browse > Article
http://dx.doi.org/10.4014/jmb.1302.02073

Molecular Cloning and Enzymatic Characterization of Cyclomaltodextrinase from Hyperthermophilic Archaeon Thermococcus sp. CL1  

Lee, Jae-Eun (Graduate School of Biotechnology and Institute of Life Sciences and Resources, Kyung Hee University)
Kim, In-Hwan (Graduate School of Biotechnology and Institute of Life Sciences and Resources, Kyung Hee University)
Jung, Jong-Hyun (Graduate School of Biotechnology and Institute of Life Sciences and Resources, Kyung Hee University)
Seo, Dong-Ho (Graduate School of Biotechnology and Institute of Life Sciences and Resources, Kyung Hee University)
Kang, Sung-Gyun (Marine Biotechnology Research Center, Korea Ocean Research and Development Institute)
Holden, James F. (Department of Microbiology, University of Massachusetts)
Cha, Jaeho (Department of Microbiology, College of Natural Sciences, Pusan National University)
Park, Cheon-Seok (Graduate School of Biotechnology and Institute of Life Sciences and Resources, Kyung Hee University)
Publication Information
Journal of Microbiology and Biotechnology / v.23, no.8, 2013 , pp. 1060-1069 More about this Journal
Abstract
Genome organization near cyclomaltodextrinases (CDases) was analyzed and compared for four different hyperthermophilic archaea: Thermococcus, Pyrococcus, Staphylothermus, and Thermofilum. A gene (CL1_0884) encoding a putative CDase from Thermococcus sp. CL1 (tccd) was cloned and expressed in Escherichia coli. TcCD was confirmed to be highly thermostable, with optimal activity at $85^{\circ}C$. The melting temperature of TcCD was determined to be $93^{\circ}C$ by both differential scanning calorimetry and differential scanning fluorimetry. A size-exclusion chromatography experiment showed that TcCD exists as a monomer. TcCD preferentially hydrolyzed ${\alpha}$-cyclodextrin (${\alpha}$-CD), and at the initial stage catalyzed a ring-opening reaction by cleaving one ${\alpha}$-1,4-glycosidic linkage of the CD ring to produce the corresponding single maltooligosaccharide. Furthermore, TcCD could hydrolyze branched CDs (G1-${\alpha}$-CD, G1-${\beta}$-CD, and G2-${\beta}$-CD) to yield significant amounts (45%, 40%, and 46%) of isomaltooligosaccharides (panose and $6^2$-${\alpha}$-maltosylmaltose) in addition to glucose and maltose. This enzyme is one of the most thermostable maltogenic amylases reported, and might be of potential value in the production of isomaltooligosaccharides in the food industry.
Keywords
Cyclomaltodextrinase; isomaltooligosaccharides; panose; Thermococcus;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Shim JH, Park JT, Hong JS, Kim KW, Kim MJ, Auh JH, et al. 2009. Role of maltogenic amylase and pullulanase in maltodextrin and glycogen metabolism of Bacillus subtilis 168. J. Bacteriol. 191: 4835-4844.   DOI   ScienceOn
2 Tamura K, Dudley J, Nei M, Kumar S. 2007. MEGA4: Molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24: 1596-1599.   DOI   ScienceOn
3 Xavier KB, Peist R, Kossmann M, Boos W, Santos H. 1999. Maltose metabolism in the hyperthermophilic archaeon Thermococcus litoralis: purification and characterization of key enzymes. J. Bacteriol. 181: 3358-3367.
4 Yang SJ, Lee HS, Park CS, Kim YR, Moon TW, Park KH. 2004. Enzymatic analysis of an amylolytic enzyme from the hyperthermophilic archaeon Pyrococcus furiosus reveals its novel catalytic properties as both an $\alpha$-amylase and a cyclodextrin-hydrolyzing enzyme. Appl. Environ. Microbiol. 70: 5988-5995.   DOI   ScienceOn
5 Yoon JW, Jeon EJ, Jung IH, Min MJ, Lee HY, Kim MJ, et al. 2003. Maltosyl-erythritol, a major transglycosylation product of erythritol by Bacillus stearothermophilus maltogenic amylase. Biosci. Biotechnol. Biochem. 67: 525-531.   DOI   ScienceOn
6 Jung JH, Holden JF, Seo DH, Park KH, Shin H, Ryu S, et al. 2012. Complete genome sequence of the hyperthermophilic archaeon Thermococcus sp. strain CL1, isolated from a Paralvinella sp. polychaete worm collected from a hydrothermal vent. J. Bacteriol. 194: 4769-4770.   DOI   ScienceOn
7 Hashimoto Y, Yamamoto T, Fujiwara S, Takagi M, Imanaka T. 2001. Extracellular synthesis, specific recognition, and intracellular degradation of cyclomaltodextrins by the hyperthermophilic archaeon Thermococcus sp. strain B1001. J. Bacteriol. 183: 5050-5057.   DOI
8 Holden JF, Takai K, Summit M, Bolton S, Zyskowski J, Baross JA. 2001. Diversity among three novel groups of hyperthermophilic deep-sea Thermococcus species from three sites in the northeastern Pacific Ocean. FEMS Microbiol. Ecol. 36: 51-60.   DOI   ScienceOn
9 Jun X, Lupeng L, Minjuan X, Oger P, Fengping W, Jebbar M, Xiang X. 2012. Complete genome sequence of the obligate piezophilic hyperthermophilic archaeon Pyrococcus yayanosii CH1. J. Bacteriol. 193: 4297-4298.
10 Jung JH, Lee JH, Holden JF, Seo DH, Shin H, Kim HY, et al. 2012. Complete genome sequence of the hyperthermophilic archaeon Pyrococcus sp. strain ST04, isolated from a deepsea hydrothermal sulfide chimney on the Juan de Fuca Ridge. J. Bacteriol. 194: 4434-4435.   DOI   ScienceOn
11 Jung TY, Li D, Park JT, Yoon SM, Tran PL, Oh BH, et al. 2012. Association of novel domain in active site of archaic hyperthermophilic maltogenic amylase from Staphylothermus marinus. J. Biol. Chem. 287: 7979-7989.   DOI   ScienceOn
12 Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, et al. 2007. Clustal W and Clustal X version 2.0. Bioinformatics 23: 2947-2948.   DOI   ScienceOn
13 Kawarabayasi Y, Sawada M, Horikawa H, Haikawa Y, Hino Y, Yamamoto S, et al. 1998. Complete sequence and gene organization of the genome of a hyper-thermophilic archaebacterium, Pyrococcus horikoshii OT3. DNA Res. 5: 55-76.   DOI   ScienceOn
14 Lee HS, Kim JS, Shim K, Kim JW, Inouye K, Oneda H, et al. 2006. Dissociation/association properties of a dodecameric cyclomaltodextrinase. Effects of pH and salt concentration on the oligomeric state. FEBS J. 273: 109-121.   DOI   ScienceOn
15 Kim JW, Kim YH, Lee HS, Yang SJ, Kim YW, Lee MH, et al. 2007. Molecular cloning and biochemical characterization of the first archaeal maltogenic amylase from the hyperthermophilic archaeon Thermoplasma volcanium GSS1. Biochim. Biophys. Acta 1774: 661-669.   DOI   ScienceOn
16 Lee HS, Bae SS, Kim MS, Kwon KK, Kang SG, Lee JH. 2011. Complete genome sequence of hyperthermophilic Pyrococcus sp. strain NA2, isolated from a deep-sea hydrothermal vent area. J. Bacteriol. 193: 3666-3667.   DOI   ScienceOn
17 Lee HS, Kim MS, Cho HS, Kim JI, Kim TJ, Choi JH, et al. 2002. Cyclomaltodextrinase, neopullulanase, and maltogenic amylase are nearly indistinguishable from each other. J. Biol. Chem. 277: 21891-21897.   DOI   ScienceOn
18 Lee HS, Shockley KR, Schut GJ, Conners SB, Montero CI, Johnson MR, et al. 2006. Transcriptional and biochemical analysis of starch metabolism in the hyperthermophilic archaeon Pyrococcus furiosus. J. Bacteriol. 188: 2115-2125.   DOI   ScienceOn
19 Lee MH, Kim YW, Kim TJ, Park CS, Kim JW, Moon TW, et al. 2002. A novel amylolytic enzyme from Thermotoga maritima, resembling cyclodextrinase and $\alpha$-glucosidase, that liberates glucose from the reducing end of the substrates. Biochem. Biophys. Res. Commun. 295: 818-825.   DOI   ScienceOn
20 Li X, Li D, Yin Y, Park KH. 2010. Characterization of a recombinant amylolytic enzyme of hyperthermophilic archaeon Thermofilum pendens with extremely thermostable maltogenic amylase activity. Appl. Microbiol. Biotechnol. 85: 1821-1830.   DOI
21 Miller GL. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31: 426-428.   DOI
22 Lee MH, Yang SJ, Kim JW, Lee HS, Park KH. 2007. Characterization of a thermostable cyclodextrin glucanotransferase from Pyrococcus furiosus DSM3638. Extremophiles 11: 537-541.   DOI
23 Li D, Park JT, Li X, Kim S, Lee S, Shim JH, et al. 2010. Overexpression and characterization of an extremely thermostable maltogenic amylase, with an optimal temperature of $100{^{\circ}C}$, from the hyperthermophilic archaeon Staphylothermus marinus. N. Biotechnol. 27: 300-307.   DOI   ScienceOn
24 Li D, Park SH, Shim JH, Lee HS, Tang SY, Park CS, et al. 2004. In vitro enzymatic modification of puerarin to puerarin glycosides by maltogenic amylase. Carbohydr. Res. 339: 2789-2797.   DOI   ScienceOn
25 Niesen FH, Berglund H, Vedadi M. 2007. The use of differential scanning fluorimetry to detect ligand interactions that promote protein stability. Nat. Protoc. 2: 2212-2221.   DOI   ScienceOn
26 Oslowski DM, Jung JH, Seo DH, Park CS, Holden JF. 2011. Production of hydrogen from $\alpha$-1,4- and $\beta$-1,4-linked saccharides by marine hyperthermophilic Archaea. Appl. Environ. Microbiol. 77: 3169-3173.   DOI   ScienceOn
27 Park KH, Kim MJ, Lee HS, Han NS, Kim D, Robyt JF. 1998. Transglycosylation reactions of Bacillus stearothermophilus maltogenic amylase with acarbose and various acceptors. Carbohydr. Res. 313: 235-246.   DOI   ScienceOn
28 Stetter KO. 2006. Hyperthermophiles in the history of life. Philos. Trans. R. Soc. Lond. B Biol. Sci. 361: 1837-1843.   DOI   ScienceOn
29 Park KH, Kim TJ, Cheong TK, Kim JW, Oh BH, Svensson B. 2000. Structure, specificity and function of cyclomaltodextrinase, a multispecific enzyme of the α-amylase family. Biochim. Biophys. Acta 1478: 165-185.   DOI   ScienceOn
30 Robyt JF, Mukerjea R. 1994. Separation and quantitative determination of nanogram quantities of maltodextrins and isomaltodextrins by thin-layer chromatography. Carbohydr. Res. 251: 187-202.   DOI   ScienceOn