• 제목/요약/키워드: ${\alpha}$-helix

검색결과 147건 처리시간 0.026초

Structural basis of novel TRP14, thioredoxin-related protein that regulates TNE-$\alpha$ signaling pathways

  • Woo, Joo-Rang;Jeong, Woo-Jin;Rhee, Sue-Goo;Ryu, Seong-Eon
    • 한국결정학회:학술대회논문집
    • /
    • 한국결정학회 2003년도 춘계학술연구발표회
    • /
    • pp.18-18
    • /
    • 2003
  • Thioredoxin (Trx) is a small redox protein that is ubiquitously distributed from achaes to human. In diverse organisms, the protein is involved in various physiological roles by acting as electron donor and regulators of transcription and apoptosis as well as antioxidants. Sequences of Trx within various species are 27~69% identical to that of E. coli and all Trx proteins have the same overall fold, which consists of central five β strands surrounded by four α helices. The N-terminal cysteine in WCGPC motif of Trx is redox sensitive and the motif is highly conserved. Compared with general cysteine, the N-terminal cysteine has low pKa value. The result leads to increased reduction activity of protein. Recently, novel thio.edoxin-related protein (TRP14) was found from rat brain. TRP14 acts as disulfide reductase like Trx1, and its redox potential and pKa are similar to those of Trx1. However, TRP14 takes up electrons from cytosolic thioredoxin reductase (TrxR1), not from the mitochondrial thioredoxin reductase (TrxR2). Biological roles of TES14 were reported to be involved in regulating TNF-α induced signaling pathways in different manner with Trx1. In depletion experiments, depletion of TRP14 increased TNF-α induced phosphorylation and degradation of IκBα more than the depletion Trx1 did. It also facilitated activation of JNK and p38 MAP kinase induced by TNF-α. Unlike Trx1, TRP14 shows neither interaction nor interference with ASK1. Here, we determined three-dimensional crystal structure of TRP14 by MAD method at 1.8Å. The structure reveals that the conserved cis-Pro (Pro90) and active site-W-C-X-X-C motif, which may be involved in substrate recognition similar to Trx1 , are located at the beginning position of strand β4 and helix α2, respectively. The TRP14 structure also shows that surface of TRP14 in the vicinity of the active site, which is surrounded by an extended flexible loop and an additional short a helix, is different from that of Trx1. In addition, the structure exhibits that TRP14 interact with a distinct target proteins compared with Trx1 and the binding may depend mainly on hydrophobic and charge interactions. Consequently, the structure supports biological data that the TRP14 is involved in regulating TNF-α induced signaling pathways in different manner with Trx1.

  • PDF

G-CSF 단백질 N-말단의 비 알파-Helix 영역의 돌연변이에 의한 분비 조절 (Modulation of G-CSF Secretion by Mutations of Non Alpha-Helical Region in N-Terminus)

  • 박정혜;박정애;강석우;구태원;정경태
    • 생명과학회지
    • /
    • 제21권12호
    • /
    • pp.1778-1783
    • /
    • 2011
  • 조혈에 관여하는 cytokine은 골수세포의 성장과 분화를 촉진시켜 혈구세포 생산을 조절한다. 이런 cytokine을 조혈성장인자(hematopoitic growth factor)이라고 하고, 그 중에서 호중구 세포(neutrophil) 성장에 관여하는 과립구 콜로니 자극 인자(granulocyte-colony stimulating factor, G-CSF)는 임상적 치료제로서 아주 중요하다. 왜냐하면 화학적 항암치료를 받는 환자들에게 심각한 호중구 세포가 감소하는 증세(neutropenia)가 발생하여 감염으로 인한 사망이 일어나기 때문이다. 두 종류의 G-CSF 재조합 단백질이 치료제로 승인 받아 사용되고 있으며, G-CSF 재조합 단백질 생산에 대한 연구가 지속적으로 이루어지고 있다. 선행연구에서 본 연구팀은 누에에서 유래된 Bm5 세포주에서 G-CSF의 생산을 증대하기 위해 누에 prophenoloxidase activating enzyme의 Endoplasmic reticulum targeting signal sequence유전자와 사람 G-CSF 유전자를 융합한 chimera 유전자를 제작하여 재조합 G-CSF 단백질을 생산하였다. 본 연구에서는 이 chimera 유전자가 생산하는 재조합 G-CSF 단백질의 N-말단에 3 개의 아미노산이 결여되는 3 종류의 돌연변이 유전자를 제작하여 G-CSF 단백질 생산에 미치는 영향을 조사하였다. 그 중 한 돌연변이 유전자에 의해 세포 밖으로 분비된 G-CSF 단백질의 생산이 현저히 감소하여, N-말단 부분이 이 단백질의 분비에 관여한다는 것을 알 수 있었다.

Structure-activity relationships of cecropin-like peptides and their interactions with phospholipid membrane

  • Lee, Eunjung;Jeong, Ki-Woong;Lee, Juho;Shin, Areum;Kim, Jin-Kyoung;Lee, Juneyoung;Lee, Dong Gun;Kim, Yangmee
    • BMB Reports
    • /
    • 제46권5호
    • /
    • pp.282-287
    • /
    • 2013
  • Cecropin A and papiliocin are novel 37-residue cecropin-like antimicrobial peptides isolated from insect. We have confirmed that papiliocin possess high bacterial cell selectivity and has an ${\alpha}$-helical structure from $Lys^3$ to $Lys^{21}$ and from $Ala^{25}$ to $Val^{35}$, linked by a hinge region. In this study, we demonstrated that both peptides showed high antimicrobial activities against multi-drug resistant Gram negative bacteria as well as fungi. Interactions between these cecropin-like peptides and phospholipid membrane were studied using CD, dye leakage experiments, and NMR experiments, showing that both peptides have strong permeabilizing activities against bacterial cell membranes and fungal membranes as well as $Trp^2$ and $Phe^5$ at the N-terminal helix play an important role in attracting cecropin-like peptides to the negatively charged bacterial cell membrane. Cecropin-like peptides can be potent peptide antibiotics against multi-drug resistant Gram negative bacteria and fungi.

누에에서 새로운 항세균성 펩타이드 유사 유전자의 분리와 염기서열 결정 (Molecular Cloning of a Gene Encoding a Putative Antibacterial Peptide from Bombyx mori)

  • 김상현;제연호;윤은영;강석우;김근영;강석권
    • 한국응용곤충학회지
    • /
    • 제35권4호
    • /
    • pp.321-325
    • /
    • 1996
  • 누에에서 새로운 항세균성 펩타이드 유전자를 탐색하기 위하여 E. coli K12로 체강 주사한 누에 유충의 cDNA 유전자 은행에서 차별화 선별로, 잠재 항세균성 펩타이드 유전자로 추정되는 BmInc8 클론을 분리하였다. BmInc8은 564bp의 크기를 가지며, 59개 아미노산을 coding하는 open reading frame과 2개의 잠정 폴리아데닐화 부위를 보유하고 있었다. BmInc8은 M. sexta에서 분리, 보고된 bactericidine 유전자와 61.2%의 DNA 상동성을 나타내는 것으로, 그 연역된 펩타이드 구조는 항세균성 펩타이드의 일종인 cecropin과 유사한 2가닥의 $\alpha$-helix가 Lysine-Proline 경첩부위에 의해 포개져 있는 형태를 갖는 것으로 추정되었다. 또한 cDNA 삽입 부위의 기능성 검정을 위해 원핵 발현벡터인 pT7-5를 이용하여 E. coli BL21(DE3) 균주에 형질전환하고 IPTG로 induction한 결과 E. coli BL21(DE3) 균주의 성장이 정지됨을 관찰할 수 있었다. 이상의 결과로 BmInc8은 DNA 상동성 비교, 연역 아미노산의 구조 추정 및 cDNA 삽입 부위를 이용한 transient expression 결과 항세균성 펩타이드를 coding하는 유전자임을 추정할 수 있었다. 또한 Bminc8의 cDNA 유전자 정보를 GenBank에 등록하였으며 등록 번호는 U30289이었다.

  • PDF

Preparation and Antioxidant Activities In Vitro of a Designed Antioxidant Peptide from Pinctada fucata by Recombinant Escherichia coli

  • Wu, Yanyan;Ma, Yongkai;Li, Laihao;Yang, Xianqing
    • Journal of Microbiology and Biotechnology
    • /
    • 제28권1호
    • /
    • pp.1-11
    • /
    • 2018
  • An antioxidant peptide derived from Pinctada fucata meat using an Alcalase2.4L enzymatic hydrolysis method (named AOP) and identified by LC-TOF-MS has promising clinical potential for generating cosmetic products that protect skin from sunshine. To date, there have been few published studies investigating the structure-activity relationship in these peptides. To prepare antioxidant peptides better and improve their stability, the design and expression of an antioxidant peptide from Pinctada fucata (named DSAOP) was studied. The peptide contains a common precursor of an expression vector containing an ${\alpha}$-helix tandemly linked according to the BamHI restriction sites. The DNA fragments encoding DSAOP were synthesized and subcloned into the expression vector pET-30a (+), and the peptide was expressed mostly as soluble protein in recombinant Escherichia coli. Meanwhile, the DPPH radical scavenging activity, superoxide radical scavenging activity, and hydroxyl radical scavenging activity of DSAOP $IC_{50}$ values were $0.136{\pm}0.006$, $0.625{\pm}0.025$, and $0.306{\pm}0.015mg/ml$, respectively, with 2-fold higher DPPH radical scavenging activity compared with chemosynthesized AOP (p < 0.05), as well as higher superoxide radical scavenging activity compared with natural AOP (p < 0.05). This preparation method was at the international advanced level. Furthermore, pilot-scale production results showed that DSAOP was expressed successfully in fermenter cultures, which indicated that the design strategy and expression methods would be useful for obtaining substantial amounts of stable peptides at low costs. These results showed that DSAOP produced with recombinant Escherichia coli could be useful in cosmetic skin care products, health foods, and pharmaceuticals.

Disulfide Bond as a Structural Determinant of Prion Protein Membrane Insertion

  • Shin, Jae Yoon;Shin, Jae Il;Kim, Jun Seob;Yang, Yoo Soo;Shin, Yeon-Kyun;Kim, Kyeong Kyu;Lee, Sangho;Kweon, Dae-Hyuk
    • Molecules and Cells
    • /
    • 제27권6호
    • /
    • pp.673-680
    • /
    • 2009
  • Conversion of the normal soluble form of prion protein, PrP ($PrP^C$), to proteinase K-resistant form ($PrP^{Sc}$) is a common molecular etiology of prion diseases. Proteinase K-resistance is attributed to a drastic conformational change from ${\alpha}$-helix to ${\beta}$-sheet and subsequent fibril formation. Compelling evidence suggests that membranes play a role in the conformational conversion of PrP. However, biophysical mechanisms underlying the conformational changes of PrP and membrane binding are still elusive. Recently, we demonstrated that the putative transmembrane domain (TMD; residues 111-135) of Syrian hamster PrP penetrates into the membrane upon the reduction of the conserved disulfide bond of PrP. To understand the mechanism underlying the membrane insertion of the TMD, here we explored changes in conformation and membrane binding abilities of PrP using wild type and cysteine-free mutant. We show that the reduction of the disulfide bond of PrP removes motional restriction of the TMD, which might, in turn, expose the TMD into solvent. The released TMD then penetrates into the membrane. We suggest that the disulfide bond regulates the membrane binding mode of PrP by controlling the motional freedom of the TMD.

A Gene Encoding Phosphatidyl Inositol-specific Phospholipase C form Cryphonectria parasitica Modulates the Hypoviral-modulated Laccase1 Expression

  • Kim, Dae-Hyuk
    • 한국미생물학회:학술대회논문집
    • /
    • 한국미생물학회 2005년도 International Meeting of the Microbiological Society of Korea
    • /
    • pp.159-161
    • /
    • 2005
  • Hypovirus infection of the chestnut blight fungus Cryphonectria parasitica is a useful model system to study the hypoviral regulation of fungal gene expression. The hypovirus is known to downregulate the fungal laccase1 (lac 1), the modulation of which is tightly governed by the inositol triphosphate ($IP_3$) and calcium second messenger system in a virus-free strain. We cloned the gene cplc1 encoding a phosphatidyl inositol-specific phospholipase C (PLC), in order to better characterize the fungal gene regulation by hypovirus. Sequence analysis of the cplc1 gene indicated that the protein product contained both the X and Y domains, which are the two conserved regions found in all known PLCs, with a 133 amino acid extension between the 2nd ${\beta}$-strand and the ${\alpha}$-helix in the X domain. In addition, the gene organization appeared to be highly similar to that of a ${\delta}$ type PLC. Disruption of the cplc1 gene resulted in slow growth and produced colonies characterized by little aerial mycelia and deep orange in color. In addition, down regulation of lac1 expression was observed. However, temperature sensitivity, osmosensitivity, virulence, and other hypovirulence-associated characteristics did not differ from the wild-type strain. Functional complementation of the cplc1-null mutant with the PLC1 gene from Saccharomyces cerevisiae restored lac1 expression, which suggests that the cloned gene encodes PLC activity. The present study indicates that the cplc1 gene is required for appropriate mycelial growth, and that it regulates the lac1 expression, which is also modulated by the hypovirus. Although several PLC genes have been identified in various simple eukaryotic organisms, the deletion analysis of the cplc1 gene in this study appears to be the first report on the functional analysis of PLC in filamentous fungi.

  • PDF

Molecular Dynamics of the C-Terminal Domain Mouse CDT1 Protein

  • Khayrutdinov, Bulat I.;Bae, Won-Jin;Kim, Jeong-Ju;Hwang, Eun-Ha;Yun, Young-Mi;Ryu, Kyoung-Seok;Cheong, Hae-Kap;Kim, Yu-Gene;Cho, Yun-Je;Jeon, Young-Ho;Cheong, Chae-Joon
    • 한국자기공명학회논문지
    • /
    • 제11권1호
    • /
    • pp.30-41
    • /
    • 2007
  • The backbone molecular dynamics of the C-terminal part of the mouse Cdt1 protein (tCdt1, residues 420-557) was studied by high field NMR spectroscopy. The Secondary structure of this protein was suggested by analyzing of chemical shift of backbone atoms with programs TALOS and PECAN, together with NOE connectivities from 3D $^{15}N-HSQC-NOESY$ data. Measurement of dynamic parameters $T_1,\;T_2$ and NOE and limited proteolysis experiment provided information for domain organization of tCdt1(420-557). Analysis of the experimental data showed that the C-terminal part of the tCdt1 has well folded domain for residues 455-553. The residues 420-453 including ${\alpha}-helix$ (432-441) are flexible and probably belong to other functional domain in intact full length Cdt1 protein.

  • PDF

The Role of Residues 103, 104, and 278 in the Activity of SMG1 Lipase from Malassezia globosa: A Site-Directed Mutagenesis Study

  • Lan, Dongming;Wang, Qian;Popowicz, Grzegorz Maria;Yang, Bo;Tang, Qingyun;Wang, Yonghua
    • Journal of Microbiology and Biotechnology
    • /
    • 제25권11호
    • /
    • pp.1827-1834
    • /
    • 2015
  • The SMG1 lipase from Malassezia globosa is a newly found mono- and diacylglycerol (DAG) lipase that has a unique lid in the loop conformation that differs from the common alpha-helix lid. In the present study, we characterized the contribution of three residues, L103 and F104 in the lid and F278 in the rim of the binding site groove, on the function of SMG1 lipase. Site-directed mutagenesis was conducted at these sites, and each of the mutants was expressed in the yeast Pichia pastoris, purified, and characterized for their activity toward DAG and p-nitrophenol (pNP) ester. Compared with wild-type SMG1, F278A retained approximately 78% of its activity toward DAG, but only 11% activity toward pNP octanoate (pNP-C8). L103G increased its activity on pNP-C8 by approximately 2-fold, whereas F104G showed an approximate 40% decrease in pNP-C8 activity, and they both showed decreased activity on the DAG emulsion. The deletion of 103-104 retained approximately 30% of its activity toward the DAG emulsion, with an almost complete loss of pNP-C8 activity. The deletion of 103-104 showed a weaker penetration ability to a soybean phosphocholine monolayer than wild-type SMG1. Based on the modulation of the specificity and activity observed, a pNP-C8 binding model for the ester (pNP-C8, N102, and F278 form a flexible bridge) and a specific lipid-anchoring mechanism for DAG (L103 and F104 serve as "anchors" to the lipid interface) were proposed.

Biophysical Studies Reveal Key Interactions between Papiliocin-Derived PapN and Lipopolysaccharide in Gram-Negative Bacteria

  • Durai, Prasannavenkatesh;Lee, Yeongjoon;Kim, Jieun;Jeon, Dasom;Kim, Yangmee
    • Journal of Microbiology and Biotechnology
    • /
    • 제28권5호
    • /
    • pp.671-678
    • /
    • 2018
  • Papiliocin, isolated from the swallowtail butterfly (Papilio xuthus), is an antimicrobial peptide with high selectivity against gram-negative bacteria. We previously showed that the N-terminal helix of papiliocin (PapN) plays a key role in the antibacterial and anti-inflammatory activity of papiliocin. In this study, we measured the selectivity of PapN against multidrug-resistant gram-negative bacteria, as well as its anti-inflammatory activity. Interactions between Trp2 of PapN and lipopolysaccharide (LPS), which is a major component of the outer membrane of gram-negative bacteria, were studied using the Trp fluorescence blue shift and quenching in LPS micelles. Furthermore, using circular dichroism, we investigated the interactions between PapN and LPS, showing that LPS plays critical roles in peptide folding. Our results demonstrated that Trp2 in PapN was buried deep in the negatively charged LPS, and Trp2 induced the ${\alpha}$-helical structure of PapN. Importantly, docking studies determined that predominant electrostatic interactions of positively charged arginine residues in PapN with phosphate head groups of LPS were key factors for binding. Similarly, hydrophobic interactions by aromatic residues of PapN with fatty acid chains in LPS were also significant for binding. These results may facilitate the development of peptide antibiotics with anti-inflammatory activity.