• Title/Summary/Keyword: $^2H$ NMR

Search Result 2,015, Processing Time 0.035 seconds

Component Analysis of Suaeda asparagoides Extracts (나문재 추출물의 성분 분석)

  • Yang, Hee-Jung;Park, Soo-Nam
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.34 no.3
    • /
    • pp.157-165
    • /
    • 2008
  • In the previous study, the anti-oxidant activity of oxtract/fraction of Sueada aspparagoides(SA) and the stability test for the cream containing SA extract were investigated respectively[1,2]. In this study, the components of SA extract were analyzed by TLC, HPLC, and LC/ESI-MS/MS, $^1H$-NMR. TLC chromatogram of ethyl acetate fraction of SA extract revealed 5 bands $(SA1{\sim}SA5)$. HPLC chromatogram of aglycone fractions obtained from deglycoylation reaction of ethyl acetate fraction showed 2 bands (SAA 2 and SAA 1), which were identified as quercetin (composition ratio, 16.88%) and kaempferol (83.12%) in the order of elution time. Among 5 bands of TLC chromatogram, 4 bands $(SA2{\sim}SA5)$ also were Identified as kaempferol-3-O-glucoside (SA 2), quercetin-3-O-glucoside (SA3), kaempferol-3-O-rutinoside (SA 4), quercetin-3-O-rutinoside (SA 5) by LC/ESI-MS/MSMS/MS. respectively. The spectrum generated for SAA 1 by LC/ESI-MS/MS in the negative ion mode also gave the ion corresponding to the deprotonated aglycone $[M-H]^-$ (285m/z), the $^1H$-NMR spectrum contained signals [${\delta}$ 6.19 (1H, d, J=1.8Hz, H-6), ${\delta}$ 6.44 (1H, d, J=1.8Hz, H-8), ${\delta}$ 6.92 (2H, d, J=9.0Hz, H-3', 5'), ${\delta}$ 8.04 (2H, d, J=9.0Hz, H-2', 6', thus SAA 1 was identified as kaempferol. SAA 2 yielded the deprotonated agycone ion $[M-H]^-$ (301m/z), $^1H$-NMR spectrum showed signals [${\delta}$ 6.20 (1H, d, J=2.0Hz, H-6), ${\delta}$ 6.42 (1H, d, J=2.0Hz, H-8), ${\delta}$ 6.90 (1H, d, J=8.6Hz, H-5'), ${\delta}$ 7.55 (1H, dd, J=8.6, 2.2Hz, H-6'), ${\delta}$ 7.69 (1H, d, J=2.2Hz, H-2', thus SAA 2 was Identified as quercetin. In conclusion, with the anti-oxidant activity and the stability test reported previously, component analysis of SA extracts could be applicable to new cosmeceuticals.

Quantitative Analysis of Coumarins from Angelica gigas Using $^1H$-NMR

  • Yoo, Jong-Su;Ahn, Eun-Mi;Song, Myoung-Chong;Bang, Myun-Ho;Kim, Dong-Hyun;Han, Min-Woo;Kwak, Ho-Young;Lee, Dae-Young;Lyu, Ha-Na;Baek, Nam-In
    • Food Science and Biotechnology
    • /
    • v.17 no.3
    • /
    • pp.573-577
    • /
    • 2008
  • $^1H$-Nuclear magnetic resonance (NMR) spectrometry was applied to the quantitative analysis of coumarins in the roots of Angelica gigas without any chromatographic purification. The experiment was performed by the analysis of each singlet germinal methyl, which was well separated in the range of 1.0-2.0 ppm in the $^1H$-NMR spectrum. The quantity of the compounds was calculated by the ratio of the intensity of each compound to the known amount of internal standard (dimethyl terephthalate). These results were compared with the conventional gas chromatography (GC) method. The contents of decursin and decursinol angelate in A. gigas were determined $1.98{\pm}0.07$, $1.13{\pm}0.08%$ in quantitative $^1H$-NMR method and $2.06{\pm}0.24$, $1.17{\pm}0.24%$ in GC method, respectively. The advantages of quantitative $^1H$-NMR analysis are that can be analyzed to identify and quantify, and no reference compounds required for calibration curves. Besides, it allows rapid and simple quantification for coumarins with an analysis time for only 10 min without any preprocessing.

Steroidal Saponins from Dracaena humilis (Dracaenaceae) and their Chemotaxonomic Significance

  • Mouzie, Cedric Mbiesset;Ponou, Beaudelaire Kemvoufo;Fouedjou, Romuald Tematio;Teponno, Remy Bertrand;Tapondjou, Leon Azefack
    • Natural Product Sciences
    • /
    • v.27 no.2
    • /
    • pp.122-127
    • /
    • 2021
  • A new steroidal saponin, (23S,24S)-spirosta-5,25(27)-diene-1𝛽,3𝛽,23,24-tetrol 1-O-((2,3-diacetyl-α-L-rhamnopyranosyl)-(1→2)-[𝛽-D-xylopyranosyl-(1→3)]-α-L-arabinopyranoside)-24-O-𝛽-D-glucopyranoside (humilisoside) together with the known 𝛽-sitosterol 3-O-glucopyranoside, adenosine, dioscin, and methylprotodioscin were isolated from the leaves of Dracaena humilis. Their structures were elucidated by spectral techniques including mass spectrometry (ESIMS, HRESIMS, tandem MS-MS), 1D NMR (1H, 13C NMR), 2D NMR (HSQC, 1H-1H COSY, HMBC, NOESY), chemical method as well as by comparison with spectroscopic data reported in the literature. The chemotaxonomic significance of the isolation of these compounds is discussed. This is the first report on the phytochemical investigation of D. humilis.

A Systematic NMR Determination of α-D-Glucooligosaccharides, Effect of Linkage Type, Anomeric Configuration and Combination of Different Linkages Type on 13C Chemical Shifts for the Determination of Unknown Isomaltooligosaccharides

  • Goffin, Dorothee;Bystricky, Peter;Shashkov, Alexander S.;Lynch, Mary;Hanon, Emilien;Paquot, Michel;Savage, Angela V.
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.11
    • /
    • pp.2535-2541
    • /
    • 2009
  • Prebiotic isomaltooligosaccharide preparations contain $\alpha$-D-glucooligosaccharides comprising isomaltooligosaccharides (IMOs) and non-prebiotic maltooligosaccharides (MOs). They are both glucose oligosaccharides characterized by their degree of polymerization (DP) value (from 2 to $\sim$10), linkages types and positions (IMOs: $\alpha$-(1$\rightarrow$2, 3, 6 and in a lower proportion internal 1$\rightarrow$4) linkages, MOs: α-(1$\rightarrow$4) linkages). Their structure is the key factor for their prebiotic potential. In order to determine and elucidate the exact structure of unknown IMOs and MOs, unambiguous assignments of $^{13}C$ and $^1H$ chemical shifts of commercial standards, representative of IMOs and MOs diversity, have been determined using optimized standard one and two-dimensional experiments such as $^1H$ NMR, $^{13}C$ NMR, APT and ${^1}H-{^1}H$ COSY, TOCSY, NOESY and <$^1H-{^{13}}C$ heteronuclear HSQC, HSQC-TOCSY, and HMBC. Here we point out the differential effect of substitution by a glucose residue at different positions on chemical shifts of anomeric as well as ring carbons together with the effect of the reducing end configuration for low DP oligosaccharides and diasteroisotopic effect for H-6 protons. From this study, structural $^{13}C$ specific spectral features can be identified as tools for structural analysis of isomaltooligosaccharides.

Structure Determination of the Extractives from the Taxus Cuspidata Fruits (주목열매 추출물 구조분석)

  • Park, Se-Yeong;Choi, In-Gyu;Bae, Young-Soo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.41 no.6
    • /
    • pp.566-575
    • /
    • 2013
  • The fruits of Taxus cuspidata were collected, divided into seeds and fruits, and extracted with 95% EtOH. The extracts were evaporated under the reduced vacuum pressure, concentrated, then successively fractionated with a series of n-hexane, dichloromethane, ethyl acetate and water on a separatory funnel to get some freeze dried samples. A portion of the EtOAc (arils:1.65 g, seeds:1.04 g) and $H_2O$ (arils:7 g, seeds:10 g) soluble samples were chromatographed on a Sephadex column using MeOH-$H_2O$ (1:1, 1:3, 1:5, v/v), EtOH-hexane (3:1, v/v) mixture and 100% $H_2O$ as eluting solvents to isolate pure compounds from the fractions. The isolates were developed by cellulose TLC using t-BuOH-HOAc-$H_2O$ (TBA; 3:1:1, v/v/v) and 6% aqueous HOAc. Visualization was done under ultraviolet light and by spraying the vanillin-HCl-EtOH reagent (4.8:12:480, v/v/v). followed by heating. The structures of the isolates were characterized by $^1H$- and $^{13}C$-NMR, DEPT, 2D-NMR, LC/MS and EI-MS spectra. In addition to the NMR and MS spectra, acid hydrolysis and permethylation were used to determine the correct structure of the isolated sugar compound. Their structures were elucidated as (+)-catechin (1), (-)-epicatechin (2), (+)-gallocatechin (3), (-)-epigallocatechin (4) and ${\beta}$-D-fructofuranose-($2{\rightarrow}4$)-O-${\beta}$-D-glucopyranose($1{\rightarrow}4$)-O-${\alpha}$-D-glucopyranose ($1{\rightarrow}2$)-O-${\beta}$-D-fructofuranose (5) on the basis of the above experimental evidences.

Synthesis and Spectroscopic Studies of Metal Complexes Formed in the Reaction of Metal Ions with Urea at High Temperature (높은 온도에서 Urea와 금속이온과의 반응으로 얻어진 금속 Complexes의 합성과 분광학적 연구)

  • Gaballa, Akmal S.;Teleb, Said M.;Nour, El-Metwally
    • Journal of the Korean Chemical Society
    • /
    • v.51 no.4
    • /
    • pp.339-345
    • /
    • 2007
  • Urea reacts with PtCl2, H2[PtCl6]·6H2O, H2[IrCl6] and Ni(CH3CO2)2 in aqueous solution at high temperature (60-80 °C) yielding [PtCl2(Urea)]·2H2O (1), (NH4)2[PtCl6] (2), (NH4)2[IrCl6]·H2O (3) and [Ni2(OH)2(NCO)2(H2O)2] (4) complexes, respectively. In complex 1, urea coordinates to Pt(II) as a neutral bidentate ligand via amido nitrogen atoms. In complexes 2, 3 and 4 it seems that the coordinated urea molecules decompose during the reaction at high temperature and a variety of reaction products are obtained. All complexes were isolated in moderate yields as dark green (1), yellow (2), pale brown (3) and faint green (4) precipitates, respectively. The reaction products were characterized by their microanalysis, IR, 1H and 13C NMR spectra as well as thermal analysis. General mechanisms describing the formation of these complexes were suggested.

The NMR assignments of anthraquinones from Cassia tora

  • Choi, Jae-Sue;Jung, Jee-Hyung;Lee, Hee-Jung;Kang, Sam-Sik
    • Archives of Pharmacal Research
    • /
    • v.19 no.4
    • /
    • pp.302-306
    • /
    • 1996
  • The $^1H- and^{13}C-NMR$ spectra of alaternin, aurantio-obtusin, chryso-obtusin, obtusin and 2-glucosyl obtusifolin isolated from the seeds of Cassia tora have been assigned based on HMBC, long-range HETCOR, fully $^1H-coupled {13}^C-NMR$, deuterium isotope experiment, and by comparison with the model compounds.

  • PDF

Complete assignments of $^{1}H$ and $^{13}C NMR$ spectra of Chivosazole F

  • Park, Jung-Rae;Jongheonn Shin;Kim, Jin-Cheol;Ahn, Jong-Woong
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.5 no.2
    • /
    • pp.91-98
    • /
    • 2001
  • The $^1$H and $^{13}$ C NMR spectra of chivosazole F from Sorangium cellulosum were completely assigned by a combination of ID and 2D NMR techniques. The configurations of double bonds were confirmed from the ROESY spectra. The stereochemistry at asymmetric carboncenters was partially assigned on the basis of the results of NOE analysis.

  • PDF

INTRINSIC NMR ISOTOPE SHIFTS OF CYCLOOCTANONE AT LOW TEMPERATURE (저온에서의 싸이클로옥타논에 대한 고유동위원소 효과)

  • Jung, Miewon
    • Analytical Science and Technology
    • /
    • v.7 no.2
    • /
    • pp.213-224
    • /
    • 1994
  • Several isotopomers of cyclooctanone were prepared by selective deuterium substitution. Intrinsic isotope effects on $^{13}C$ NMR chemical shifts of these isotopomers were investigated systematically at low temperature. These istope effects were discussed in relation to the preferred boat-chair conformation of cyclooctanone. Deuterium isotope effects on NMR chemical shifts have been known for a long time. Especially in a conformationally mobile molecule, isotope perturbation could affect NMR signals through a combination of isotope effects on equilibria and intrinsic effects. The distinction between intrinsic and nonintrinsic effects is quite difficult at ambient temperature due to involvement of both equilibrium and intrinsic isotope effects. However if equilibria between possible conformers of cyclooctanone are slowed down enough on the NMR time scale by lowering temperature, it should be possible to measure intrinsic isotope shifts from the separated signals at low temperature. $^{13}C$ NMR has been successfully utilized in the study on molecular conformation in solution when one deals with stable conformers or molecules were rapid interconversion occurs at ambient temperature. The study of dynamic processes in general requires analysis of spectra at several temperature. Anet et al. did $^1H$ NMR study of cyclooctanone at low temperature to freeze out a stable conformation, but were not able initially to deduce which conformation was stable because of the complexity of alkyl region in the $^1H$ NMR spectrum. They also reported the $^1H$ and $^{13}C$ NMR spectra of the $C_9-C_{16}$ cycloalkanones with changing temperature from $-80^{\circ}C$ to $-170^{\circ}C$, but they did not report a variable temperature $^{13}C$ NMR study of cyclooctanone. For the analysis of the intrinsic isotope effect with relation to cylooctanone conformation, $^{13}C$ NMR spectra are obtained in the present work at low temperatures (up to $-150^{\circ}C$) in order to find the chemical shifts at the temperature at which the dynamic process can be "frozen-out" on the NMR time scale and cyclooctanone can be observed as a stable conformation. Both the ring inversion and pseudorotational processes must be "frozen-out" in order to see separate resonances for all eight carbons in cyclooctanone. In contrast to $^1H$ spectra, slowing down just the ring inversion process has no apparent effects on the $^{13}C$ spectra because exchange of environments within the pairs of methylene carbons can still occur by the pseudorotational process. Several isotopomers of cyclooctanone were prepared by selective deuterium substitution (fig. 1) : complete deuterium labeling at C-2 and C-8 positions gave cyclooctanone-2, 2, 8, $8-D_4$ : complete labeling at C-2 and C-7 positions afforded the 2, 2, 7, $7-D_4$ isotopomer : di-deuteration at C-3 gave the 3, $3-D_2$ isotopomer : mono-deuteration provided cyclooctanone-2-D, 4-D and 5-D isotopomers : and partial deuteration on the C-2 and C-8 position, with a chiral and difunctional case catalyst, gave the trans-2, $8-D_2$ isotopomer. These isotopomer were investigated systematically in relation with cyclooctanone conformation and intrinsic isotope effects on $^{13}C$ NMR chemical shifts at low temperature. The determination of the intrinsic effects could help in the analysis of the more complex effects at higher temperature. For quantitative analysis of intrinsic isotope effects, the $^{13}C$ NMR spectrum has been obtained for a mixture of the labeled and unlabeled compounds because the signal separations are very small.

  • PDF

Preparation and Structure of trans-Bis(tert-butylamine)dichloropalladium(II), trans-[$PdCl_2(t-BuNH_2)_2$] (trans-Bis(tert-butylamine)dichloropalladium(II), trans-[$PdCl_2(t-BuNH_2)_2$의 합성 및 구조)

  • 김혜진;한원석;이순원
    • Korean Journal of Crystallography
    • /
    • v.12 no.1
    • /
    • pp.10-13
    • /
    • 2001
  • Compound PdCl₂(PhCN)₂(1) reacted with tert-butylamine(t-BuNH₂) to give trans-[PdCl₂(t-BuNH₂)₂] (2) Compound 2 was characterized by spectroscopy (¹H-NMR, /sup 13/C{¹H}-NMR, and IR) and X-ray diffraction. Crystallographic data for f2: monoclinic space group p2₁/c, a=6.298(1)Å, b=20.740(2)Å, c=10.731(1)Å, β=92.58(1)°, Z=4, R(wR₂)=0.0207(0.0543).

  • PDF