• Title/Summary/Keyword: $^2$$H_2O$

Search Result 18,210, Processing Time 0.059 seconds

Calculation of Unit Hydrograph from Discharge Curve, Determination of Sluice Dimension and Tidal Computation for Determination of the Closure curve (단위유량도와 비수갑문 단면 및 방조제 축조곡선 결정을 위한 조속계산)

  • 최귀열
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.7 no.1
    • /
    • pp.861-876
    • /
    • 1965
  • During my stay in the Netherlands, I have studied the following, primarily in relation to the Mokpo Yong-san project which had been studied by the NEDECO for a feasibility report. 1. Unit hydrograph at Naju There are many ways to make unit hydrograph, but I want explain here to make unit hydrograph from the- actual run of curve at Naju. A discharge curve made from one rain storm depends on rainfall intensity per houre After finriing hydrograph every two hours, we will get two-hour unit hydrograph to devide each ordinate of the two-hour hydrograph by the rainfall intensity. I have used one storm from June 24 to June 26, 1963, recording a rainfall intensity of average 9. 4 mm per hour for 12 hours. If several rain gage stations had already been established in the catchment area. above Naju prior to this storm, I could have gathered accurate data on rainfall intensity throughout the catchment area. As it was, I used I the automatic rain gage record of the Mokpo I moteorological station to determine the rainfall lntensity. In order. to develop the unit ~Ydrograph at Naju, I subtracted the basic flow from the total runoff flow. I also tried to keed the difference between the calculated discharge amount and the measured discharge less than 1O~ The discharge period. of an unit graph depends on the length of the catchment area. 2. Determination of sluice dimension Acoording to principles of design presently used in our country, a one-day storm with a frequency of 20 years must be discharged in 8 hours. These design criteria are not adequate, and several dams have washed out in the past years. The design of the spillway and sluice dimensions must be based on the maximun peak discharge flowing into the reservoir to avoid crop and structure damages. The total flow into the reservoir is the summation of flow described by the Mokpo hydrograph, the basic flow from all the catchment areas and the rainfall on the reservoir area. To calculate the amount of water discharged through the sluiceCper half hour), the average head during that interval must be known. This can be calculated from the known water level outside the sluiceCdetermined by the tide) and from an estimated water level inside the reservoir at the end of each time interval. The total amount of water discharged through the sluice can be calculated from this average head, the time interval and the cross-sectional area of' the sluice. From the inflow into the .reservoir and the outflow through the sluice gates I calculated the change in the volume of water stored in the reservoir at half-hour intervals. From the stored volume of water and the known storage capacity of the reservoir, I was able to calculate the water level in the reservoir. The Calculated water level in the reservoir must be the same as the estimated water level. Mean stand tide will be adequate to use for determining the sluice dimension because spring tide is worse case and neap tide is best condition for the I result of the calculatio 3. Tidal computation for determination of the closure curve. During the construction of a dam, whether by building up of a succession of horizontael layers or by building in from both sides, the velocity of the water flowinii through the closing gapwill increase, because of the gradual decrease in the cross sectional area of the gap. 1 calculated the . velocities in the closing gap during flood and ebb for the first mentioned method of construction until the cross-sectional area has been reduced to about 25% of the original area, the change in tidal movement within the reservoir being negligible. Up to that point, the increase of the velocity is more or less hyperbolic. During the closing of the last 25 % of the gap, less water can flow out of the reservoir. This causes a rise of the mean water level of the reservoir. The difference in hydraulic head is then no longer negligible and must be taken into account. When, during the course of construction. the submerged weir become a free weir the critical flow occurs. The critical flow is that point, during either ebb or flood, at which the velocity reaches a maximum. When the dam is raised further. the velocity decreases because of the decrease\ulcorner in the height of the water above the weir. The calculation of the currents and velocities for a stage in the closure of the final gap is done in the following manner; Using an average tide with a neglible daily quantity, I estimated the water level on the pustream side of. the dam (inner water level). I determined the current through the gap for each hour by multiplying the storage area by the increment of the rise in water level. The velocity at a given moment can be determined from the calcalated current in m3/sec, and the cross-sectional area at that moment. At the same time from the difference between inner water level and tidal level (outer water level) the velocity can be calculated with the formula $h= \frac{V^2}{2g}$ and must be equal to the velocity detertnined from the current. If there is a difference in velocity, a new estimate of the inner water level must be made and entire procedure should be repeated. When the higher water level is equal to or more than 2/3 times the difference between the lower water level and the crest of the dam, we speak of a "free weir." The flow over the weir is then dependent upon the higher water level and not on the difference between high and low water levels. When the weir is "submerged", that is, the higher water level is less than 2/3 times the difference between the lower water and the crest of the dam, the difference between the high and low levels being decisive. The free weir normally occurs first during ebb, and is due to. the fact that mean level in the estuary is higher than the mean level of . the tide in building dams with barges the maximum velocity in the closing gap may not be more than 3m/sec. As the maximum velocities are higher than this limit we must use other construction methods in closing the gap. This can be done by dump-cars from each side or by using a cable way.e or by using a cable way.

  • PDF

Studies on the Rice Yield Decreased by Ground Water Irrigation and Its Preventive Methods (지하수 관개에 의한 수도의 멸준양상과 그 방지책에 관한 연구)

  • 한욱동
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.16 no.1
    • /
    • pp.3225-3262
    • /
    • 1974
  • The purposes of this thesis are to clarify experimentally the variation of ground water temperature in tube wells during the irrigation period of paddy rice, and the effect of ground water irrigation on the growth, grain yield and yield components of the rice plant, and, furthermore, when and why the plant is most liable to be damaged by ground water, and also to find out the effective ground water irrigation methods. The results obtained in this experiment are as follows; 1. The temperature of ground water in tube wells varies according to the location, year, and the depth of the well. The average temperatures of ground water in a tubewells, 6.3m, 8.0m deep are $14.5^{\circ}C$ and $13.1^{\circ}C$, respercively, during the irrigation period of paddy rice (From the middle of June to the end of September). In the former the temperature rises continuously from $12.3^{\circ}C$ to 16.4$^{\circ}C$ and in the latter from $12.4^{\circ}C$ to $13.8^{\circ}C$ during the same period. These temperatures are approximately the same value as the estimated temperatures. The temperature difference between the ground water and the surface water is approximately $11^{\circ}C$. 2. The results obtained from the analysis of the water quality of the "Seoho" reservoir and that of water from the tube well show that the pH values of the ground water and the surface water are 6.35 and 6.00, respectively, and inorganic components such as N, PO4, Na, Cl, SiO2 and Ca are contained more in the ground water than in the surface water while K, SO4, Fe and Mg are contained less in the ground water. 3. The response of growth, yield and yield components of paddy rice to ground water irrigation are as follows; (l) Using ground water irrigation during the watered rice nursery period(seeding date: 30 April, 1970), the chracteristics of a young rice plant, such as plant height, number of leaves, and number of tillers are inferior to those of young rice plants irrigated with surface water during the same period. (2) In cases where ground water and surface water are supplied separately by the gravity flow method, it is found that ground water irrigation to the rice plant delays the stage at which there is a maximum increase in the number of tillers by 6 days. (3) At the tillering stage of rice plant just after transplanting, the effect of ground water irrigation on the increase in the number of tillers is better, compared with the method of supplying surface water throughout the whole irrigation period. Conversely, the number of tillers is decreased by ground water irrigation at the reproductive stage. Plant height is extremely restrained by ground water irrigation. (4) Heading date is clearly delayed by the ground water irrigation when it is practised during the growth stages or at the reproductive stage only. (5) The heading date of rice plants is slightly delayed by irrigation with the gravity flow method as compared with the standing water method. (6) The response of yield and of yield components of rice to ground water irrigation are as follows: \circled1 When ground water irrigation is practised during the growth stages and the reproductive stage, the culm length of the rice plant is reduced by 11 percent and 8 percent, respectively, when compared with the surface water irrigation used throughout all the growth stages. \circled2 Panicle length is found to be the longest on the test plot in which ground water irrigation is practised at the tillering stage. A similar tendency as that seen in the culm length is observed on other test plots. \circled3 The number of panicles is found to be the least on the plot in which ground water irrigation is practised by the gravity flow method throughout all the growth stages of the rice plant. No significant difference is found between the other plots. \circled4 The number of spikelets per panicle at the various stages of rice growth at which_ surface or ground water is supplied by gravity flow method are as follows; surface water at all growth stages‥‥‥‥‥ 98.5. Ground water at all growth stages‥‥‥‥‥‥62.2 Ground water at the tillering stage‥‥‥‥‥ 82.6. Ground water at the reproductive stage ‥‥‥‥‥ 74.1. \circled5 Ripening percentage is about 70 percent on the test plot in which ground water irrigation is practised during all the growth stages and at the tillering stage only. However, when ground water irrigation is practised, at the reproductive stage, the ripening percentage is reduced to 50 percent. This means that 20 percent reduction in the ripening percentage by using ground water irrigation at the reproductive stage. \circled6 The weight of 1,000 kernels is found to show a similar tendency as in the case of ripening percentage i. e. the ground water irrigation during all the growth stages and at the reproductive stage results in a decreased weight of the 1,000 kernels. \circled7 The yield of brown rice from the various treatments are as follows; Gravity flow; Surface water at all growth stages‥‥‥‥‥‥514kg/10a. Ground water at all growth stages‥‥‥‥‥‥428kg/10a. Ground water at the reproductive stage‥‥‥‥‥‥430kg/10a. Standing water; Surface water at all growh stages‥‥‥‥‥‥556kg/10a. Ground water at all growth stages‥‥‥‥‥‥441kg/10a. Ground water at the reproductive stage‥‥‥‥‥‥450kg/10a. The above figures show that ground water irrigation by the gravity flow and by the standing water method during all the growth stages resulted in an 18 percent and a 21 percent decrease in the yield of brown rice, respectively, when compared with surface water irrigation. Also ground water irrigation by gravity flow and by standing water resulted in respective decreases in yield of 16 percent and 19 percent, compared with the surface irrigation method. 4. Results obtained from the experiments on the improvement of ground water irrigation efficiency to paddy rice are as follows; (1) When the standing water irrigation with surface water is practised, the daily average water temperature in a paddy field is 25.2$^{\circ}C$, but, when the gravity flow method is practised with the same irrigation water, the daily average water temperature is 24.5$^{\circ}C$. This means that the former is 0.7$^{\circ}C$ higher than the latter. On the other hand, when ground water is used, the daily water temperatures in a paddy field are respectively 21.$0^{\circ}C$ and 19.3$^{\circ}C$ by practising standing water and the gravity flow method. It can be seen that the former is approximately 1.$0^{\circ}C$ higher than the latter. (2) When the non-water-logged cultivation is practised, the yield of brown rice is 516.3kg/10a, while the yield of brown rice from ground water irrigation plot throughout the whole irrigation period and surface water irrigation plot are 446.3kg/10a and 556.4kg/10a, respectivelely. This means that there is no significant difference in yields between surface water irrigation practice and non-water-logged cultivation, and also means that non-water-logged cultivation results in a 12.6 percent increase in yield compared with the yield from the ground water irrigation plot. (3) The black and white coloring on the inside surface of the water warming ponds has no substantial effect on the temperature of the water. The average daily water temperatures of the various water warming ponds, having different depths, are expressed as Y=aX+b, while the daily average water temperatures at various depths in a water warming pond are expressed as Y=a(b)x (where Y: the daily average water temperature, a,b: constants depending on the type of water warming pond, X; water depth). As the depth of water warning pond is increased, the diurnal difference of the highest and the lowest water temperature is decreased, and also, the time at which the highest water temperature occurs, is delayed. (4) The degree of warming by using a polyethylene tube, 100m in length and 10cm in diameter, is 4~9$^{\circ}C$. Heat exchange rate of a polyethylene tube is 1.5 times higher than that or a water warming channel. The following equation expresses the water warming mechanism of a polyethylene tube where distance from the tube inlet, time in day and several climatic factors are given: {{{{ theta omega (dwt)= { a}_{0 } (1-e- { x} over { PHI v })+ { 2} atop { SUM from { { n}=1} { { a}_{n } } over { SQRT { 1+ {( n omega PHI) }^{2 } } } } LEFT { sin(n omega t+ { b}_{n }+ { tan}^{-1 }n omega PHI )-e- { x} over { PHI v }sin(n omega LEFT ( t- { x} over {v } RIGHT ) + { b}_{n }+ { tan}^{-1 }n omega PHI ) RIGHT } +e- { x} over { PHI v } theta i}}}}{{{{ { theta }_{$\infty$ }(t)= { { alpha theta }_{a }+ { theta }_{ w'} +(S- { B}_{s } ) { U}_{w } } over { beta } , PHI = { { cpDU}_{ omega } } over {4 beta } }}}} where $\theta$$\omega$; discharged water temperature($^{\circ}C$) $\theta$a; air temperature ($^{\circ}C$) $\theta$$\omega$';ponded water temperature($^{\circ}C$) s ; net solar radiation(ly/min) t ; time(tadian) x; tube length(cm) D; diameter(cm) ao,an,bn;constants determined from $\theta$$\omega$(t) varitation. cp; heat capacity of water(cal/$^{\circ}C$ ㎥) U,Ua; overall heat transfer coefficient(cal/$^{\circ}C$ $\textrm{cm}^2$ min-1) $\omega$;1 velocity of water in a polyethylene tube(cm/min) Bs ; heat exchange rate between water and soil(ly/min)

  • PDF

Studies on the Liquid Manure Application for Silage Corn (사일리지용 옥수수에 대한 액상분뇨 시비연구)

  • Shin, Dong-Eun;Kim, Dong-Am;Choi, Hong-Lim;Song, Kwan-Cheol;Lee, Hyuk-Ho;Kim, Weon-Ho;Chung, Eui-Soo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.32 no.1
    • /
    • pp.22-30
    • /
    • 1999
  • This experiment was carried out to determine the forage yield and mineral contents of silage corn(Zea mays L.), and N balance, soil chemical characteristics and nitrate-N level in infiltration water by different types and N rates of liquid manure applied. Seven treatments consisting of chemical fertilizer $200kg\;N;ha^{-1}$, liquid cattle manure 200, 320 and $440kg\;N;ha^{-1}$, liquid swine manure 200, 320 and $440kg\;N;ha^{-1}$ were arranged in a randomized complete block design with three replications. The results obtained at National Livestock Research Institute, RDA, in Suweon from May 1997 to Aug. 1997 are summarized as follows : There were no significant differences in percentage of dry matter among the treatments, but significant dry matter yield differences were found (P<0.05), and also the mean dry matter yield of liquid swine manure plot was higher than that of liquid cattle manure plot. Potassium, calcium and magnesium contents of silage corn increased with increasing liquid manure application rates (P<0.05). Nitrate-N content of silage corn in the liquid cattle manure treatments was not influenced by liquid manure application rates, but that in the liquid swine manure treatments increased with increasing the N rates of liquid manure application. pH and contents of exchangeable canons of the soil after experiment were raised by increasing the amount of liquid manure application. Available $P_2O_5$ content in topsoil(0-10cm) was highest as $340mg\;kg^{-1}$ at the plot of liquid swine manure $440kg\;N;ha^{-1}$. Concentration of nitrate-N in infiltration water increased at the plot of liquid swine manure $440kg\;N;ha^{-1}$. Amount of nitrogen balance increased with increasing liquid manure application rates. Based on the results of this experiment, it is suggested that the mean dry matter yield of liquid swine manure plot was higher than that of liquid cattle manure plot, and the amount of nitrogen balance increased with increasing liquid manure application.

  • PDF

Effect of Wine Yeast, Temperature and Moisture Contents on Characteristics of Jeung-Pyun Batter (Wine Yeast와 온도 및 수분함량이 증편 반죽의 특성에 미치는 영향)

  • 유진현;한규홍
    • Culinary science and hospitality research
    • /
    • v.8 no.3
    • /
    • pp.309-321
    • /
    • 2002
  • In this study, the characteristics of Jeung-pyun hatter were investigated by wine yeast. The processing conditions were optimized by physicochemical characterization including pH, volume, reduced sugar. The effect of yeast concentration, moisture content on the fermentation time and temperature were investigated in view of improving productivity. It was found that the volume was increased at maximum state when the fermentation was carried out at 35 $^{\circ}C$ with 0.1% yeast concentration 60% of moisture. The quality of Jeung-Pyun was most preferable in the condition of 0.1% wine yeast(Pasteur Red) for 8 hrs at 35$^{\circ}C$.

  • PDF

Metabolic Changes on Occipital Cortex during Visual Stimulation with Functional MR Imaging and H MR Spectroscopy (기능적 자기공명영상법과 양성자 가지공명분광법을 이용한 시각자극에 의한 후두염 피질의 대사물질 변화)

  • Kim, Tae;Suh, Tae-Suk;Choe, Bo-Young;Kim, Sung-Eun;Lee, Heung-Kyu;Shinn, Kyung-Sub
    • Investigative Magnetic Resonance Imaging
    • /
    • v.3 no.1
    • /
    • pp.47-52
    • /
    • 1999
  • Purpose : The purpose of this study was aimed to evaluate the BOLD(blood oxygen level dependent) contrast fMRI(functional MR imaging) in the occipital lobe and to compare with the metabolic changes based on H MRS (MR spectroscopy) and MRSI (MR spectroscopic imaging) before and after visual stimulation Materials and Methods : Healthy human volunteers (eight males and two females with 24-30 year age) participated in this study. All of the BOLD fMRI were acquired on a 1.5T MR with EPI during supervised visual stimulation in the occipital lobe. The red flicker with 8Hz was used for visual stimulation. After imaging acquisition, the MR images were transferred into unix workstation and processed with acquired from the same location based on the activation map. MRSI (magnetic resonance spectroscopic imaging) was also acquired to analyze the lactate changes before and after stimulation. Results : The activation maps were successfully produced by BOLD effect due to visual stimulation. NAA (N-acetyle aspartate)/Cr (creatine) ratio varied only from $1.79{\pm}0.28{\;}to{\;}1.88{\pm}0.20$ in activation area before and after stimulation. However, the signal intensity of lactate was elevated $9.48{\pm}4.38$ times higher than before activation. Lactate metabolite images were consistent with the activation maps. Conclusion : The BOLD contrast fMRI is enough sensitive to detect the activated area in human brain during the visual stimulation. Lactate metabolite map presents the evidence of lactate elevation on the same area of activation.

  • PDF

Changes in Dormant Phase and Bud Development of 'Fuji' Apple Trees in the Chungju Area of Korea (충주지역에서 '후지' 사과나무의 휴면단계 변화 및 눈 발달)

  • Lee, ByulHaNa;Park, YoSup;Park, Hee-Seung
    • Horticultural Science & Technology
    • /
    • v.33 no.4
    • /
    • pp.501-510
    • /
    • 2015
  • In this study, we investigated the onset and release of endo-dormancy under natural conditions by observing bud break characteristics in 'Fuji' apple trees using water cuttings. Through examinations of bud break rate and days to bud break, we found that the endo-dormancy of 'Fuji' apple tree continues for 70 d from 165 to 255 d after full bloom (DAFB), from late October to early January of the following year. In addition, within 20 d of first bud break, based on a final bud break rate of 60% or more, we able to identify the timing of the changeover from para-dormancy to endo-dormancy, and endo-dormancy to eco-dormancy. Analysis of the chilling requirement during the endo-dormancy period revealed that chilling accumulation up to 255 DAFB to release endo-dormancy amounted to 666 and 517 h based on the CH and Utah models, respectively. Observation of internal changes in the bud during endo-dormancy showed that flower bud differentiation begins from mid-July, and t ime of inflorescence o f the disk f lower is a vailable to f ind. The f lower buds subsequently developed slowly but steadily during endo-dormancy and in the following year in February, the developmental stage of each organ had progressed. Moreover, the flower buds of 'Fuji' apples were mostly healthy during the dormancy period, but some exhibited necrosis of flower primordium, due partial cell damage from the formation of ice crystals rather than a direct effect of the low temperature. Flower buds were formed in both the axillary buds of bourse shoots and terminal buds of spurs, but lower bud differentiation was observed for the terminal buds of spurs at rate of about 65% of total buds, which was directly related to the bud size and shoot diameter.

Filter-Feeding Effect of a Freshwater Bivalve (Corbicula leana PRIME) on Phytoplankton (식물플랑크톤에 대한 담수산 패류 (참재첩)의 섭식효과)

  • Kim, Ho-Sub;Shin, Jae-Ki;Hwang, Soon-Jin
    • Korean Journal of Ecology and Environment
    • /
    • v.34 no.4 s.96
    • /
    • pp.298-309
    • /
    • 2001
  • The purpose of this study was to evaluate the filtering-feeding effect of a freshwater mussel (Corbicula leana) on the phytoplankton communities in two lakes with different trophic conditions between June and September, 2000. Manipulation experiments were conducted with two treatments (the control and mussel addition), and each established in duplicate 10 l chambers. Both ambient nutrient (TN, TP) and chlorophyll-a concentrations were significantly (p<0.01) higher in Lake Ilgam than Lake Soyang. Cyanophytes (Microcystis, Oscillatoria, Lyngbya and Dactylococcopis) consistently dominated algal community in Lake llgam, while flagellated algae (Dinobryon divergence, Mallomonas, Rhodomonas) and cyanophytes (Microcystis)dominated in Lake Soyang. The net exponential death rate ($R\;=\;day^{-1}$) of total phytoplankton in the mussel treatment ranged $1.70{\sim}7.39$ and $0.38{\sim}1.64$ in Lakes Soyang and Ilgam, respectively. Mean filtering rate standardized by mussel AFDW ($ml\;mgAFDW^{1}\;h^{-1}$) was much higher in Lake Soyang ($1.70{\sim}3.06$) than in Lake Ilgam($0.24{\sim}0.88$0.24~o.88). Estimating FR per mussel, 1 mussel filtered $1.6{\sim}7.8\;l$ per day and $1.7{\sim}3.0\;l$ per day in Lakes Soyang and Ilgam, respectively. Based on tile C-flux tobiomass ratio, Corbicula leana consumed $0.8{\sim}4.4$ fold of phytoplankton standing stock in Lake Soyang, and $0.4{\sim}1.6$ fold in Lake Ilgam per day. Mussel feeding resulted in increase of SRP concentration by $30{\sim}50%$, compared with the control. The results of this study suggest that filter-feeding activity of Corbicula leana varies depending on the phytoplankton density and community composition. The high seston consumption rate of Corsicuja Jeaua even in a eutrophic lake suggests that biomanipulation approach using filter-feeding mussels can be used far wate rquality management in small eutrophic reservoirs.

  • PDF

Suppressive Mechanism of Soil-borne Disease Development and its Practical Application -Isolation and Identification of Species of Trichoderma Antagonistic to Soil diseases and its activities in the Rhizosphere- (토양병의 발병억제 기작과 그 실용성 -길항성 Trichoderma spp.의 분리, 동정 및 근권내 활동-)

  • Kim, S.I.;Shim, J.O.;Shin, H.S.;Choi, H.J.;Lee, M.W.
    • The Korean Journal of Mycology
    • /
    • v.20 no.4
    • /
    • pp.337-346
    • /
    • 1992
  • Trichoderma spp. are an effective control agent for damping-off or other plant diseases. The interaction between. T. hamatum and Rhizoctonia solani on the rhizosphere or surface soil were examined to assess the possible roles of antibiosis or competition in the mechanisms of biological control agents as a basic research. In a proportional comparison, total bacteria, fungi, actinomycetes and Trichoderma spp were 65%, 8.8%, 25.9% and 0.28% respectively in their distribution in the soil. Among Trichoderma spp isolated, the 5 species of Trichoderma spp were indentified as T. koninggii, T. pseudokoninggii, T. aureoviridi, T. hamatum and T. viride respectively. In a mycoparasitic test, one isolate of T. hamatum strain Tr-5 showed an enzymatic ability to break fungal hyphae into piecies and infected on the R. solani hyphae showing a parasitism. Spore germination of the all isolates of Trichoderma spp showed a 1.7-7.3% of germination in natural soil conditions, but the percentage was high in sterile soil indicating all the natural soil were fungistatic on conidia of Trichoderma spp. In rhizosphere competent assay in pea plant, the antagonistic T. hamatum, T. viride, T. koninggii, T. pseudokoninggii showed a colonizing upper soil depth in rhizosphere around 1-3 cm in root zone, but the colonizing ability was much reduced along the deeper the soil depth. Propagule density was decreased in deeper the soil layer. Disease development rate treated alone with plant pathogens, Fusarium solani, Rhizoctonia solani, Cylindrocarpon destructans increased, but disease incidence rate reduced in treatment with combinations with antagonistic T. hamatum strain Tr-5.

  • PDF

Dehydration of Lactic Acid to Bio-acrylic Acid over NaY Zeolites: Effect of Calcium Promotion and KOH Treatment (NaY 제올라이트 촉매 상에서 젖산 탈수반응을 통한 바이오아크릴산 생산: Ca 함침 및 KOH 처리 영향)

  • Jichan, Kim;Sumin, Seo;Jungho, Jae
    • Clean Technology
    • /
    • v.28 no.4
    • /
    • pp.269-277
    • /
    • 2022
  • With the recent development of the biological enzymatic reaction industry, lactic acid (LA) can be mass-produced from biomass sources. In particular, a catalytic process that converts LA into acrylic acid (AA) is receiving much attention because AA is used widely in the petrochemical industry as a monomer for superabsorbent polymers (SAP) and as an adhesive for displays. In the LA conversion process, NaY zeolites have been previously shown to be a high-activity catalyst, which improves AA selectivity and long-term stability. However, NaY zeolites suffer from fast deactivation due to severe coking. Therefore, the aim of this study is to modify the acid-base properties of the NaY zeolite to address this shortcoming. First, base promoters, Ca ions, were introduced to the NaY zeolites to tune their acidity and basicity via ion exchange (IE) and incipient wetness impregnation (IWI). The IWI method showed superior catalyst selectivity and stability compared to the IE method, maintaining a high AA yield of approximately 40% during the 16 h reaction. Based on the NH3- and CO2-TPD results, the calcium salts that impregnated into the NaY zeolites were proposed to exit as an oxide form mainly at the exterior surface of NaY and act as additional base sites to promote the dehydration of LA to AA. The NaY zeolites were further treated with KOH before calcium impregnation to reduce the total acidity and improve the dispersion of calcium through the mesopores formed by KOH-induced desilication. However, this KOH treatment did not lead to enhanced AA selectivity. Finally, calcium loading was increased from 1wt% to 5wt% to maximize the amount of base sites. The increased basicity improved the AA selectivity substantially to 65% at 100% conversion while maintaining high activity during a 24 h reaction. Our results suggest that controlling the basicity of the catalyst is key to obtaining high AA selectivity and high catalyst stability.

Studies on the chemical composition of citrus fruits in Korea(II) -Changes of acid and sugar components with growth- (한국산(韓國産) 감귤류(柑橘類)의 화학성분(化學成分)에 관(關)한 연구(硏究) (II) -주요품종별(主要品種別) 당(糖) 및 산조성(酸組成)의 시기별(時期別) 변화(變化)에 관(關)하여-)

  • Park, H.;Kim, Y.S.;Kim, Z.U.
    • Applied Biological Chemistry
    • /
    • v.9
    • /
    • pp.41-57
    • /
    • 1968
  • Changes of acids (total, titratable and combined form) and sugars (total, reducing and non-reducing) in the edible part and the rind of 17 varieties the in growing and ripening period were investigated. The results were summarized as follows. 1) The percentage of rind was notably decreased in growing period and slightly in the ripening period- It may suggest that the rates of translocation of metabolite from leaves to each part of fruit are different with growth phase. 2) The heavier the weight of fruit, the higher the percentage of rind was and the varieties having over 200 g per fruit showed the value over 30 in the rind percentage and over 15 in the number seeds per fruit. 3) Total acid contents in the rind were highest at the maximum grow th of fruit except in Citrus grandis having tie lowest value (below 20 me/100 g F.W). of total acid at maximum point in which total acid content is steadily increase. 4) Total acid and titratable acid in the edible part and total acid and combined acid in whole fruit life showed 0.933 and 0.970 of correlation coefficient significant at 1% level respectively, and most acid in the edible part was titratable acid(73%) whereas acid in the rind consists mostly of combined acid. 5) The content of combined acid in the ripening period increased in the edible part and decreased in the rind. It may be contributed to translocation of some cations from the rind to the edible part. 6) The grouping criteria on citrus fruit were applicable on melon, watermelon and tomatoes. 7) The contents of total sugar and non-reducing sugar in the edible part were continuously increased whereas the content of reducing sugar were decreased in certain varieties, notablly in citrus natsudaidai. The correlation coefficient between total sugar and reducing sugar in the edible part with ripening decreased as $0.849^{**},\;0.732^{**}.\;0.583^*$. ( $^{**}$: significant at 1% level and $^{*}:$: at 5%) 8) 61% of total sugar in the edible part was non-reducing sugar whereas 88% of total sugar in the rind was reducing form at the end of ripening and the correlation coefficient between total and non-reducing sugar in the edible part was 0.861 end total and reducing sugar in the rind was 0.972, both significant at 1% level. 9) Varieties having the percentage of the rind below 36 showed higher value than I in the ratio of total sugar in the edible part to one in the rind. It may suggest that there exists any intimate relation between relative sugar content and growth rate of fruit parts. 10) Citrus unshiu in Guje island showed lower values in the content of acid and sugar, and the rind percentage but higher sweetness index (the ratio of total sugar to titratable acid) comparing with the same variety in Jeiu.

  • PDF