DOI QR코드

DOI QR Code

Changes in Dormant Phase and Bud Development of 'Fuji' Apple Trees in the Chungju Area of Korea

충주지역에서 '후지' 사과나무의 휴면단계 변화 및 눈 발달

  • Lee, ByulHaNa (Pear Research Station, National Institute of Horticultural & Herbal Science, Rural Development Administration) ;
  • Park, YoSup (Department of Integrative Plant Science, School of Bioresource and Bioscience, Chung-Ang University) ;
  • Park, Hee-Seung (Department of Integrative Plant Science, School of Bioresource and Bioscience, Chung-Ang University)
  • 이별하나 (국립원예특작과학원 배연구소) ;
  • 박요섭 (중앙대학교 생명자원공학부 식물시스템과학전공) ;
  • 박희승 (중앙대학교 생명자원공학부 식물시스템과학전공)
  • Received : 2015.01.23
  • Accepted : 2015.04.10
  • Published : 2015.08.31

Abstract

In this study, we investigated the onset and release of endo-dormancy under natural conditions by observing bud break characteristics in 'Fuji' apple trees using water cuttings. Through examinations of bud break rate and days to bud break, we found that the endo-dormancy of 'Fuji' apple tree continues for 70 d from 165 to 255 d after full bloom (DAFB), from late October to early January of the following year. In addition, within 20 d of first bud break, based on a final bud break rate of 60% or more, we able to identify the timing of the changeover from para-dormancy to endo-dormancy, and endo-dormancy to eco-dormancy. Analysis of the chilling requirement during the endo-dormancy period revealed that chilling accumulation up to 255 DAFB to release endo-dormancy amounted to 666 and 517 h based on the CH and Utah models, respectively. Observation of internal changes in the bud during endo-dormancy showed that flower bud differentiation begins from mid-July, and t ime of inflorescence o f the disk f lower is a vailable to f ind. The f lower buds subsequently developed slowly but steadily during endo-dormancy and in the following year in February, the developmental stage of each organ had progressed. Moreover, the flower buds of 'Fuji' apples were mostly healthy during the dormancy period, but some exhibited necrosis of flower primordium, due partial cell damage from the formation of ice crystals rather than a direct effect of the low temperature. Flower buds were formed in both the axillary buds of bourse shoots and terminal buds of spurs, but lower bud differentiation was observed for the terminal buds of spurs at rate of about 65% of total buds, which was directly related to the bud size and shoot diameter.

본 연구는 수삽을 이용한 'Fuji' 사과나무의 발아 특성 관찰을 통해 자연상태에서의 내재휴면 개시 및 타파 시점을 찾고, 이에 필요한 저온요구도를 파악하고자 하였다. 또한, 동시에 휴면과 발아와의 관계를 좀 더 명확히 하고자 내부적인 눈의 발달 양상을 관찰하여 휴면과 저온 및 눈 발달간의 상호연관성을 파악하여 기후변화에 따른 변화들을 예상하고 대처하는데 필요한 기초 자료를 제공하고자 수행하였다. 'Fuji' 사과나무의 내재휴면 기간은 발아 소요 일수 및 발아율 조사를 통해 만개 후 165일부터 255일 사이 즉, 10월말부터 이듬해 1월 초까지 약 70일 정도 지속됨을 알 수 있었으며, 최초 발아까지 20일 이내, 최종 발아율 60% 이상을 기준으로 외재휴면에서 내재휴면으로, 다시 내재휴면에서 환경휴면으로 전환되는 시점을 찾을 수 있었다. 이렇게 도출된 내재휴면기 동안 요구되는 저온을 산출한 결과, 내재 휴면타파기인 만개 후 255일까지 축적된 저온은 CH 모델의 경우 666h, Utah 모델은 517CU으로 조사되었다. 휴면기 및 휴면타파기 동안 눈의 내부적인 변화를 관찰한 결과, 7월 중순경부터 꽃눈분화가 시작되었으며, 9월에는 중심화의 화원기의 구분이 가능하였다. 이후 꽃눈의 발달은 휴면 기간 동안에도 느리지만 지속적으로 진행되어 이듬해 2월에는 각 기관들의 발육 단계가 좀 더 진전되어 있음이 관찰되었다. 또한 'Fuji' 사과의 눈은 휴면 기간 동안 대부분 건전하게 생존해 있었지만 일부에서 화원기의 괴사현상이 발견되었고, 이는 저온에 의한 직접적인 영향이기보다는 얼음결정 형성으로 인해 일부 조직의 세포가 피해를 입고, 이로부터 괴사가 진행되고 있음을 확인하였다. 이러한 꽃눈은 과대지의 액아와 단과지의 정아에서 모두 형성되었으나, 전체 꽃눈 중 약 65%의 비율로 단과지의 정아에서 더 많은 꽃눈이 분화되고 있었으며, 이는 눈의 크기 및 눈이 위치한 가지의 직경과 직접적인 연관이 있었다.

Keywords

References

  1. Andersen, P.C. and T.E. Crocker. 2009. Low-chill apple cultivars for north and north central Florida. Dept. of Hort. Sci. Inst. of Food and Agr. Sci. Univ. of Florida, Gainesville, FL, USA.
  2. Asakura, T. 2011. Model prediction of the spring phenology for 'Fuji' apple. Acta Hortic. 903:1135-1140.
  3. Atkinson, C.J., R.M. Brennan, and H.G. Jones. 2013. Declining chilling and its impact on temperate perennial crop. Environ. Exp. Bot. 91:48-62. https://doi.org/10.1016/j.envexpbot.2013.02.004
  4. Ben Mimoun M., and T.M. Dejong. 1999. Using the relation between growing degree hours and harvest date to estimate run-times for PEACH: A tree growth and yield simulation model. Acta Hortic. 499:107-114.
  5. Bergh, O. 1985. Morphogenesis of Malus domestica cv. Starking flower buds. S. Afr. J. plant Soil 2:187-190. https://doi.org/10.1080/02571862.1985.10634167
  6. Burke, M.J., L.V. Gusta, H.A. Quamme, C.J. Weiser, and P.H. Li. 1976. Freezing and injury in plants. Annu. Rev. Plant Physiol. 27:507-528. https://doi.org/10.1146/annurev.pp.27.060176.002451
  7. Cain D.L. 2006. Chill hours in home fruit orchards. http://www.aces.edu/counties/Walker/newscolumns/chillhoursinfruit.pdf
  8. Cesaraccio, C., D. Spano, R.L. Snyder, and P. Duce. 2004. Chilling and forcing model to predict bud-burst of crop and forest species. Agr. For. Meteorol. 126:1-13. https://doi.org/10.1016/j.agrformet.2004.03.002
  9. Chmielewski, F.M., A. Müller, and E. Bruns. 2004. Climate changes and trends in phenology of fruit trees and field crops in Germany, 1961-2000. Agr. For. Meteorol. 121:69-78. https://doi.org/10.1016/S0168-1923(03)00161-8
  10. Choi, I.M., C.H. Lee, Y.P. Hong, and H.S. Park. 2007. Relation between one-year-old branch vigor and bud necrosis in 'Campbell Early' grapevines. Kor. J. Hort. Sci. Technol. 25:375-381.
  11. Choi, I.M., J.H. Han, S.H. Kim, J.G. Cho, I.C. son, and K.R. Do. 2011. Effect of climatic changes in fruit culture zone and cultural countermeasures. Kor. J. Hort. Sci. Technol. 29:39. (Abstr.)
  12. Chung, U., K.J. Lee, and B.W. Lee. 2007. Preliminary report of observed urban-rural gradient of carbon dioxide concentration across Seoul, Suwon, and Icheon in South Korea. Kor. J. Agr. For. Meteorol. 9:268-276.
  13. Collins, C. and B. Rawnsley. 2005. Factors influencing main bud necrosis (PBN) in Australian vineyard. VII. Intl. Symp. Grapvine Physiol. Biotechnol. Acta Hortic. 689:81-86.
  14. Dokoozlian, N.K. 1999. Chilling temperature and duration interact on the budbreak of 'Perlette' grapevines cuttings. HortScience. 34:1-3.
  15. El-Agamy, S.Z., A.K.A Mohanmed, F.M.A. Mostafa, and A.Y. Abdallah. 2001. Chilling and heat requirements for budbreak and fruiting of "Anna" and "Dorsett Golden" apple cultivars under warm climatic conditions. Acta Hortic. 565:03-108.
  16. Faust, M., D. Liu, S.Y. Wang, and G.W. Stutte. 1995. Involvement of apical dominance in winter dormancy of apple buds. Acta Hortic. 395:47-56.
  17. Fishman, S., A. Erez, and G.A. Couvillon. 1987. The temperaturedependence of dormancy breaking in plants-mathematical analysis of a 2-step model involving a cooperative transition. J. Theor. Biol. 124:473-483. https://doi.org/10.1016/S0022-5193(87)80221-7
  18. Foster, T., R. Johnston, and A. Seleznyova. 2003. A morphological and quantitative characterization of early floral development in apple (Malus domestica Borkh.). Ann. Bot. 92:199-206. https://doi.org/10.1093/aob/mcg120
  19. Guy, C.L. 1990. Cold acclimation and freezing stress tolerance:Role of protein metabolism. Annu. Rev. Plant Physiol. Plant Mol. Biol. 41:187-223. https://doi.org/10.1146/annurev.pp.41.060190.001155
  20. Hauagge, R. and J.N. Cummins. 1991. Phenotypic variation of length of bud dormancy in apple cultivars and related Malus species. J. Am. Soc. Hortic. Sci. 116:00-106.
  21. Heide, O.M. 2008. Interaction of photoperiod and temperature in the control of growth and dormancy of Prunus species. Sci. Hortic. 115:309-314. https://doi.org/10.1016/j.scienta.2007.10.005
  22. Heide, O.M. and A.K. Prestrud. 2005. Low temperature, but not photoperiod, controls growth cessation and dormancy induction and release in apple and pear. Tree Physiol. 25:109-114. https://doi.org/10.1093/treephys/25.1.109
  23. Herter, F.G., N.L. Finardi, and J.C. Mauget. 1988. Dormancy development in apple trees curtivars Gala, Golden and Fuji in pelotas. Acta Hortic. 232:109-115.
  24. Horvath, D.P., J.V. Anderson, W.S. Chao, and M.E. Foley. 2003. Knowing when to grow: Signals regulating bud dormancy. Trends Plant Sci. 8:534-540. https://doi.org/10.1016/j.tplants.2003.09.013
  25. Inter-governmental Panel on Climate Change (IPCC). 2013. Fifth assessment report (WG 1) of the intergovernmental panel on climate change.
  26. Jackson, D.I. and G.B. Sweet. 1972. Flower initiation in temperate woody plants (a review based largely on the literature of conifers and deciduous fruit trees). Hortic. Abstr. 42:9-25.
  27. Kim, E.J., B.H.N. Lee, Y.H. Kwon, K.H. Shin, K.H. Chung, S.J. Park, and H.S. Park. 2011. Bud necrosis characteristics of 'Hongosul' grape. Kor. J. Hort. Sci. Technol. 29:407-412.
  28. Kim, J.H., J.C. Kim, K.C. Ko, K.R. Kim, and J.C. Lee. 2006. General pomology. Hyangmoonsha Press. Seoul. p. 38-39.
  29. Korea Meteorological Administration (KMA). 2012. Automatic weather system (AWS). http://www.kma.go.kr.
  30. Kweon, H.J., D.H. Sagong, Y.Y. Song, M.Y. Park, S.I. Kwon, and M.J. Kim. 2013. Chilling requirement for breaking of internal dormancy of main apple cultivars in Korea. Kor. J. Hort. Sci. Technol. 31:666-676.
  31. Lopez, G., R.S Johnson, and T.M. DeJong. 2007. High spring temperatures decrease peach fruit size. Calif. Agric. 61:31-34. https://doi.org/10.3733/ca.v061n01p31
  32. Luedeling, E., M. Zhang, V. Luedeling, and E.H. Girvetz. 2009. Sensitivity of winter chill models for fruit and nut trees to climate change. Agric. Ecosyst. Environ. 133:23-31. https://doi.org/10.1016/j.agee.2009.04.016
  33. Mohamed, H.B., A.M. Vadel, J.M.C. Genus, and H. Khemira. 2010. Biochemical changes in dormant grapevine shoot tissues in response to chilling: Possible role in dormancy release. Sci. Hortic. 124:440-447. https://doi.org/10.1016/j.scienta.2010.01.029
  34. Okuba, H. 2000. Growth cycle and dormancy in plants. CABI. P. 1-22.
  35. Ramina, A, M. Colauzzi, A. Masia, A. Pitacco, T. Caruso, R. Messina, and G. Scalabrelli. 1995. Hormonal and climatological aspects of dormancy in peach buds. Acta Hortic. 395:35-45.
  36. Richardson, E.A., S.D. Seeley, and D.R. Walker. 1974. A model for estimating the completion of rest for 'Redhaven' and 'Elberta' peach trees. Hortic. Sci. 9:331-332.
  37. Rodrigo, J. 1999. Spring frosts in deciduous fruit trees: Morphological damage and flower hardiness. Sci. Hortic. 85:155-173.
  38. Scagel, C.F., R.P Regan, and G. Bi. 2010. Bud necrosis of green ash nursery trees is influenced by nitrogen availability and fertilizer type. HortTechnology 20:206-212.
  39. Shaltout, A.D. and C.R. Unrath. 1983. Rest completion prediction model for Starkrimson Delicious apples. J. Am. Soc. Hortic. Sci. 108:957-961.
  40. Steponkus, P.L. 1984. Role of the plasma membrane in freezing injury and cold acclimation. Annu. Rev. Plant Physiol. 35:543-584. https://doi.org/10.1146/annurev.pp.35.060184.002551
  41. Takemura, Y., K. Kuroki, K. Matsumoto, and F. Tamura. 2013. Cultivar and areal differences in the breaking period of bud endodormancy in pear plants. Sci. Hortic. 154:20-24. https://doi.org/10.1016/j.scienta.2013.02.011
  42. Yun, S.H., J.N. Im, J.T. Lee, K.M. Shim, and K.H. Hwang. 2001. Climate change and coping with vulnerability of agricultural productivity. Kor. J. Agric. For. Meteorol. 4:220-237.

Cited by

  1. Influence of Dormancy Level and Carbon Concentration on Freezing Hardiness in Bourse Shoot of 'Fuji' Apple Tree vol.18, pp.3, 2016, https://doi.org/10.5532/KJAFM.2016.18.3.151
  2. Predicted Effects of Climate Change on Winter Chill Accumulation by Temperate Trees in South Korea vol.87, pp.2, 2015, https://doi.org/10.2503/hortj.okd-089