• Title/Summary/Keyword: $^1H$ and $^{13}C$ NMR

Search Result 1,029, Processing Time 0.042 seconds

Recently Isolated Bioactive Compounds from Korean Marine Sponges

  • Lim, Young-Ja;Kim, Jung-Sun;Chung J. Shim;Lee, Chong-O.;Im, Kwang-Sik;Jee H. Jung
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1998.11a
    • /
    • pp.89-94
    • /
    • 1998
  • Marine sponges are recognized as a plentiful source of diverse biologically active secondary metabolites. Recently, we have initiated a research to discover antitumor constituents from the marine sponges collected from Korean Waters. Marine sponges collected from the South Sea of Korea were screened for several biological activities including such as brine shrimp lethality and cytotoxicity. Significant brine shrimp lethality was detected in the crude extract of a two-sponge association of Poecillastra sp. and Jaspis sp. A cross-section of this sample showed two layers of morphologically distinct sponges. The thin and dirty yellow outer layer was identified as Poecillastra sp. (Pachastrellidae), the surface of which was very rough. The light-grey inner layer was identified as Jaspis sp. (Jaspidae), the surface of which was smooth. This two-sponge association appears to be consistent as these sponges were always found in associated form regardless of collection site or collection period. Investigation of the bioactive constituents monitored by brine shrimp lethality assay led to the isolation of pectenotoxin II (PTX2) and psammaplin A as causative compounds for the brine shrimp lethality. $^1$H- and $\^$13/C-nmr signals of PTX2 was fully assigned utilizing TOCSY, HETCOR, Long-range HETCOR, and Homonuclear J-resolved 2D experiments. PTX2 displayed very potent and selective cytotoxicities in the 60 cell line panel antitumor assay at the NCI. PTX2 has progressed to acute toxicity determination and in vivo antitumor assay at the NCI (Table 1). However, significant in vitro antitumor activity of PTX2 can not be affirmed in the in vivo assay.

  • PDF

Synthesis of Biosurfactant-Based Silver Nanoparticles with Purified Rhamnolipids Isolated from Pseudomonas aeruginosa BS-161R

  • Kumar, C. Ganesh;Mamidyala, Suman Kumar;Das, Biswanath;Sridhar, B.;Devi, G. Sarala;Karuna, Mallampalli SriLakshmi
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.7
    • /
    • pp.1061-1068
    • /
    • 2010
  • The biological synthesis of nanoparticles has gained considerable attention in view of their excellent biocompatibility and low toxicity. We isolated and purified rhamnolipids from Pseudomonas aeruginosa strain BS-161R, and these purified rhamnolipids were used to synthesize silver nanoparticles. The purified rhamnolipids were further characterized and the structure was elucidated based on one- and two-dimensional $^1H$ and $^{13}C$ NMR, FT-IR, and HR-MS spectral data. Purified rhamnolipids in a pseudoternary system of n-heptane and water system along with n-butanol as a cosurfactant were added to the aqueous solutions of silver nitrate and sodium borohydride to form reverse micelles. When these micelles were mixed, they resulted in the rapid formation of silver nanoparticles. The synthesized nanoparticles were characterized by UV-Visible spectroscopy, transmission electron microscopy, and energy dispersive X-ray spectroscopy (EDS). The nanoparticles formed had a sharp adsorption peak at 410 nm, which is characteristic of surface plasmon resonance of the silver nanoparticles. The nanoparticles were monodispersed, with an average particle size of 15.1 nm (${\sigma}={\pm}5.82$ nm), and spherical in shape. The EDS analysis revealed the presence of elemental silver signal in the synthesized nanoparticles. The formed silver nanoparticles exhibited good antibiotic activity against both Grampositive and Gram-negative pathogens and Candida albicans, suggesting their broad-spectrum antimicrobial activity.

Cytotoxic and ACAT-inhibitory Sesquiterpene Lactones from the Root of Ixeris dentata forma albiflora

  • Ahn, Eun-Mi;Bang, Myun-Ho;Song, Myoung-Chong;Park, Mi-Hyun;Kim, Hwa-Young;Kwon, Byoung-Mog;Baek, Nam-In
    • Archives of Pharmacal Research
    • /
    • v.29 no.11
    • /
    • pp.937-941
    • /
    • 2006
  • Ixeris dentata forma albiflora was extracted with 80% aqueous MeOH, and the concentrated extract was partitioned with EtOAc, n-BuOH and $H_{2}O$. Eight sesquiterpenes were isolated through repeated silica gel and octadecyl silica gel ($C_{18},\;ODS$) column chromatography of the EtOAc and n-BuOH fractions. Physicochemical analysis using NMR, MS and IR revealed the chemical structures of the sesquiterpenes, which were zaluzanin (1), 9a-hydroxyguaian-4(15), 10(14), 11 (13)-triene-6, 12-olide(2), $3{\beta}-O-{\beta}-D-glucopyranosyl-8{\beta}-hydroxyguaian$-4(15), 10(14)-diene-6, 12-olide (3), $3-O-{\beta}-D-glucopyranosyl-8{\beta}-hydroxyguauan$-10(14)-ene-6, 12-olide (4), ixerin M (5), glucozaluzanin C (6), crepiside I (7), and ixerin D (8). This is the first time that these sesquiterpene lactones have been isolated from this plant. Compounds 1, 2 and 7 revealed relatively high cytotoxicities on human colon carcinoma cell and lung adeno-carcinoma cell, while compounds 5 and 7 showed acyl-CoA: cholesterol acyltransferase (ACAT) inhibitory activity.

($n^5$-Indenyl)trichlorotitanium-catalyzed Copolymerization of Styrene and Styrenic Macromonomer Carrying a Functional Group

  • Kim, Jungahn;Kim, Keon-Hyeong;Jin, Yong-Hyeon;Hyensoo Ryu;Soonjong Kwak;Kim, Kwang-Ung;Hwang, Sung-Sang;Jo, Won-Ho;Jho, Jae-Young
    • Macromolecular Research
    • /
    • v.8 no.1
    • /
    • pp.44-52
    • /
    • 2000
  • Styrenic macromonomers with/without a silyloxy-functional group were synthesizedvia chain-end functionalization using 4-vinylbenzyl chloride as a terminating agent insec-butyllithium-initiated polymerization of styrene. The yields were 92 mol% for the silyloxy group and 88 mol% for the styrenic unit. Crystalline polystyrene-g-amorphous polystyrenes were synthesized by (η$^{5}$ -indenyl)-trichlorotitanium ((Ind)TiCl$_3$)-catalyzed copolymerizations of the macromonomers with styrene in the presence of methyl-aluminoxane (MAO) in toluene at 4$0^{\circ}C$. The macromonomer having $\alpha$, $\alpha$'-bis (4-[tert-butyldimethylsilyl-oxy]phenyl) group was also utilized for the preparation of a precursor of hydroxyl-functionalized syndio-tactic polystyrene. The obtained polymers were characterized by a combination of$^1$H, $^{13}$ C NMR spectroscopic, size exclusion chromatographic, and differential scanning calorimetric analysis. The (Ind)TiCl$_3$-catalyzed copolymerization of styrene with the macromonomer carrying the silyloxy functional group was found to be an efficient method to modify syndiotactic polystyrene without a great loss of physica] property by controlling the feud ratio of the macromonomer.

  • PDF

Adenosine derived from Staphylococcus aureus-engulfed macrophages functions as a potent stimulant for the induction of inflammatory cytokines in mast cells

  • Ma, Ying Jie;Kim, Chan-Hee;Ryu, Kyoung-Hwa;Kim, Min-Su;So, Young-In;Lee, Kong-Joo;Garred, Peter;Lee, Bok-Luel
    • BMB Reports
    • /
    • v.44 no.5
    • /
    • pp.335-340
    • /
    • 2011
  • In this study, we attempted to isolate novel mast cell-stimulating molecules from Staphylococcus aureus. Water-soluble extract of S. aureus cell lysate strongly induced human interleukin-8 in human mast cell line-1 and mouse interleukin-6 in mouse bone marrow-derived mast cells. The active molecule was purified to homogeneity through a $C_{18}$ reverse phase HPLC column. By determination of its structure by MALDITOF and $^1H$- and $^{13}C$-NMR, adenosine was revealed to be responsible for the observed cytokine induction activities. Further studies using 8-sulfophenyl theophylline, a selective adenosine receptor blocker, verified that purified adenosine can induce interleukin-8 production via adenosine receptors on mast cells. Moreover, adenosine was purified from S. aureus-engulfed RAW264.7 cells, a murine macrophage cell line, used to induce phagocytosis of S. aureus. These results show a novel view of the source of exogenous adenosine in vivo and provide a mechanistic link between inflammatory disease and bacterial infection.

Characterization of Anti-Advanced Glycation End Products (AGEs) and Radical Scavenging Constituents from Ainsliaea acerifolia (단풍취의 최종당화산물 생성 저해 및 라디칼 소거 물질의 동정)

  • Jeong, Gyeng Han;Kim, Tae Hoon
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.46 no.6
    • /
    • pp.759-764
    • /
    • 2017
  • Reactive oxygen species (ROS) and advanced glycation end products (AGEs) are valuable therapeutic targets for the regulation of diabetic complications. Activity-guided isolation of the ethylacetate (EtOAc)-soluble portion of 70% ethanolic extract from aerial parts of Ainsliaea acerifolia was performed, followed by AGE formation inhibition assay for the characterization of four dicaffeoylquinic acid derivatives of a previously known structure, methyl 3,5-di-O-caffeoyl-epi-quinate (1), 3,5-di-O-caffeoyl-epi-quinic acid (2), 4,5-di-O-caffeoyl-quinic acid (3), and methyl 4,5-di-O-caffeoyl-quinate (4). The structures of these compounds were confirmed by interpretation of nuclear magnetic resonance (NMR, $^1H-$, $^{13}C-NMR$, two-dimensional NMR) and mass spectroscopic data. Among the isolates, the major secondary metabolites, 3,5-di-O-caffeoyl-epi-quinic acid (2) and 4,5-di-O-caffeoyl-quinic acid (3) showed the most potent inhibitory effects against AGE formation with $IC_{50}$ values of $0.6{\pm}0.1{\mu}M$ and $0.4{\pm}0.1{\mu}M$, respectively. Furthermore, all isolated dicaffeoylquinic acid derivatives were evaluated for their radical scavenging activities using 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) radical, and compound 3 exhibited the most potent inhibitory effect in a concentration-dependent manner. This result suggests that the caffeoylquinic acid dimers isolated from A. acerifolia might be beneficial for the prevention of diabetic complications and related diseases.

Isolation and Identification of a Photosensitizer from Pueraria thunbergiana Leaves that Induces Apoptosis in SK-HEP-1 Cells (P. thunbergiana 잎으로부터 SK-HEP-1세포에 대한 apoptosis를 유도하는 광과민성물질의 분리 및 구조동정)

  • Lee, Jun Young;Kim, Mi Kyeong;Ha, Jun Young;Kim, Yong Gyun;Hong, Chang Oh;Kim, So Young;Kim, Chung-Hwan;Kim, Keun Ki
    • Journal of Life Science
    • /
    • v.24 no.3
    • /
    • pp.242-251
    • /
    • 2014
  • The objective of this study was to isolate a photosensitizer from Pueraria thunbergiana leaves that induces apoptosis in SK-HEP-1 cells. Column chromatography and thin layer chromatography were used to isolate active compounds from extracts of P. thunbergiana leaves. The structures of the isolated compounds were determined by 1D-NMR, 2D-NMR, and FAB-mass spectroscopy. A substance, named M4-3, was purified from the leaves of P. thunbergiana using various chromatography methods, and the absorbance of the substance was measured. The absorbance was highest at 410 nm, suggesting that the M4-3 substance was a different compound from chlorophyll a and b, which absorb at 410, 502, 533, and 607 nm. Further analyses revealed that the M4-3 compound was a $13^2$-hydoxy pheophorbide, a methyl ester with a molecular weight of 662. M4-3 was identified as a derivative compound of pheophorbide, with a structure that magnesium comes away from the porphyrin ring. The results of the analysis of the cytotoxicity of the M4-3 substance against the SK-HEP-1 cells revealed that it inhibited rates of cell growth by 40% and 80% at a concentration of 0.04 ${\mu}M$ and 0.08 ${\mu}M$, respectively. The M4-3 compound was found to be a photosensitizer for cytotoxicity because it was appeared only in light condition as examining activity in different irradiation conditions (light condition and nonlight condition) under the same concentration. Analysis of morphological changes in the cells following cell death induced by exposure to the M4-3 substance reveled representative phenomena of apoptosis (nuclear condensation, vesicle formation, and fragmentation of DNA). The induction of apoptosis was attributed to the compound's photodynamic activity.

Structural Characteristics and Anti-inflammatory Activities of Chemically Sulfated-hyaluronic Acid from Streptococcus dysgalactiae (Streptococcus dysgalactiae로부터 분리된 히알루론산과 황화된 유도체의 구조와 항염증 활성)

  • Hong, Chang-Il;Jung, Eui-Gil;Han, Kook-Il;Kim, Yong Hyun;Lee, Sung Hee;Lee, Hong Sub;Han, Man-Deuk
    • Journal of Life Science
    • /
    • v.26 no.5
    • /
    • pp.545-554
    • /
    • 2016
  • Hyaluronic acid (HA) is an important macromolecule in medical and pharmaceutical fields. HA is a natural and linear polymer composed of repeating disaccharide units of β-1, 3-N-acetyl glucosamine and β-1, 4-glucuronic acid. This work aimed to confirm the structural characteristics and anti-inflammatory activities of HA and its chemically sulfated-HA. HA was produced from a fed-batch fermentation process using Streptococcus dysgalactiae in a 5 l bioreactor. HA was isolated water-soluble form (HA-WS) and water-insoluble form (HA-WI) from culture medium, and was obtained chemically sulfated-derivative (S-HA) that resulted in a 90% yield from HA-WI. The structural features of the sulfated- HA (S-HA) were investigated by FT-IR and 1H-NMR spectroscopy. The FT-IR and NMR patterns revealed the similarity in both the FTIR spectrum as well as NMR spectrum of both reference standard and purified HA from S. dysgalactiae. The anti-inflammatory activities of HA and S-HA were examined on LPS-induced RAW 264.7 cells. S-HA was significantly inhibited production of pro-inflammatory mediators such as nitric oxide (NO) and PGE2 and the gene levels of iNOS and COX-2, which are responsible for the production of NO and PGE2, respectively. Furthermore, S-HA also suppressed the overproduction of pro-inflammatory cytokine TNF-α (<80 pg/ml) and IL-6 (<100 pg/ml) compared to that of HA-WI. The present study clearly demonstrates that HA-S exhibits anti-inflammatory activities in RAW 264.7 macrophage cells.

Anti-wrinkle Effect of Morinda citrifolia (Noni) Extracts (노니 추출물의 주름개선 효과연구)

  • Lee, Jung-Noh;Kim, Sang-Woo;Yoo, Young-Kyoung;Lee, Ghang-Tai;Lee, Kun-Kook
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.32 no.4 s.59
    • /
    • pp.227-231
    • /
    • 2006
  • Wrinkle formation is mainly attributed to the environmental factors such as UV rays, air pollution, smoking and stress etc. Especially, UV rays induce premature skin aging which is characterized by deep wrinkle, leathery dryness etc. Recently, researches on the wrinkle formation and its prevention have been the main theme in cosmetics fields. We have studied the various plant extracts having anti-wrinkle effects and finally showed that Noni (Morinda citrifolia) extracts have the efficacy of promoting the type I collagen synthesis in normal human fibroblast, using PICP assay. We purified one active compound from Noni extracts and identified its structure. It was identified as 6,7-Dimethoxy-2H-1-Benzopyran-2-one; scopoletin by $^1H-NMR,\;^{13}C-NMR,$ IR, Mass analysis. Scopoletin increased collagen synthesis in a dose dependent manner (89.5% at $0.2{\mu}g/mL$). In order to verify the anti-aging effectiveness of the cream containing 3% noni extracsts, we performed the in vivo test with some female volunteers for 12 weeks. It reduced the signs of aging, especially face wrinkles. From these results, we conclude that the noni extracts could be used as an useful anti-wrinkle agent.

Preparation and Unequivocal Identification of Chromophores-Substituted Carbosilane Dendrimers up to 7th Generations

  • Kim, Chung-Kyun;Kim, Hyo-Jung;Oh, Myeong-Jin;Hong, Jang-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.4
    • /
    • pp.873-881
    • /
    • 2009
  • Bis(phenylethynyl)dimethylsilane is branched by the hydrosilation of the phenylethynyl group with dichloromethylsilane, and then the resulting chlorosilane is reacted with lithium phenylacetylide to give the $1^{st}$ generation. The same hydrosilation and alkynylation are repeated to obtain the $7^{th}$ generation. In addition peripheral Si-Cl moiety of the seven kind generation dendrimers are reacted with alcoholic moiety of 9-hydroxymethylanthracene and 2-(2-hydroxyphenyl)benzoxazole group in the presence of TMEDA. Then three kinds of carbosilane dendrimers are prepared from the $1^{st}$ to the $7^{th}$ generations, the $7^{th}$ generation of each dendrimer has 256 phenylethynyl, 256 9-anthracenylmethoxy, or 128 2-(2-phenoxy)benzoxazole groups. Each synthesized dendrimer is unequivocally characterized by $^1H\;and\;^{13}C\;NMR$, elemental analysis, MALDI-MS, GPC, and PL (photoluminescence). Characteristically PDI (Polydisperse Index) values of the dendrimers’ peak in GPC are in the range of $1.00{\sim}1.07$, which indicates that each generation of carbosilane is in unified distribution. PL spectra of phenylethynyl and 9- anthracenemethoxy group substituted dendrimers show no significant change with increasing the generation from the $1^{st}$ to the $7^{th}$. However, the PL spectra of 2-(2-phenoxy)benzoxazole group substituted dendrimers show a blue-shift trend with increasing the generation from the $1^{st}$ to the $7^{th}$.