• Title/Summary/Keyword: $^{99m}Tc$ tricarbonyl

Search Result 9, Processing Time 0.022 seconds

Preparation and biological evaluation of 99mTc tricarbonyl cysteine (테크네슘-99엠 트리카보닐 시스테인의 제조 및 생물학적 특성 평가)

  • Jang, Beom-su;Park, Kyung-bae;Yun, Hyo-in
    • Korean Journal of Veterinary Research
    • /
    • v.44 no.1
    • /
    • pp.15-21
    • /
    • 2004
  • This paper describes the development of $^{99m}Tc$ tricarbonyl cysteine as potential renal function diagnostic radiopharmaceutical and evaluation of its biological characteristics using experimental animals. l-Cysteine was labeled efficiently with $^{99m}Tc$ tricarbonyl precursor $([^{99m}Tc(CO)_3(H_2O)_3)]^{+})$ under 30 min heating at ${75^{\circ}C}$. Labeling yield and stability were analyzed by high performance liquid chromatography (HPLC). The biodistribution property of $^{99m}Tc$ tricarbonyl cysteine in mice and its dynamic imaging profiles in rabbits were carried out. To investigate the excretion mechanism of $^{99m}Tc$ tricarbonyl cysteine, tubular transport inhibition test with probenecid was adopted. $^{99m}Tc$ tricarbonyl cysteine was obtained with a high labeling yield under the moderate condition. The results of biodistribution experiments of $^{99m}Tc$ tricarbonyl cysteine in ICR mice at 3 and 90 min provided that $^{99m}Tc$ tricarbonyl cysteine was very highly accumulated in the kidney and bladder, thereby almost 99% of $^{99m}Tc$ tricarbonyl cysteine was excreted within 90 min post injection. The same results were confirmed by the whole body dynamic images for 30 minutes and static images in rabbits at given time intervals after injection. Renogram of $^{99m}Tc$ tricarbonyl cysteine in rabbits showed that its $T_{max}$ and $T_{1/2}$ of $^{99m}Tc$ tricarbonyl cysteine were $2.33{\pm}0.56$ and $4.30{\pm}0.79$ min, respectively. The $T_{max}$ of $^{99m}Tc$ tricarbonyl cysteine with probenecid pretreatment was $2.30{\pm}0.17$ min, whereas $T_{1/2}$ of that with probenecid pretreatment was $17.0{\pm}32.47$ min. $T_{1/2}$ of $^{99m}Tc$ tricarbonyl cysteine with probenecid pretreatment was significantly different, as compared to the result without probenecid (p<0.0001). The results showed that the excretion of $^{99m}Tc$ tricarbonyl cysteine was extremely affected by probenecid. Therefore, $^{99m}Tc$ tricarbonyl cysteine was rapidly excreted from the kidney principally by the tubular secretion.

Biodistribution of 99mTc Tricarbonyl Glycine Oligomers

  • Jang, Beom-Su;Lee, Joo-Sang;Rho, Jong Kook;Park, Sang Hyun
    • Toxicological Research
    • /
    • v.28 no.4
    • /
    • pp.235-240
    • /
    • 2012
  • $^{99m}Tc$ tricarbonyl glycine monomers, trimers, and pentamers were synthesized and evaluated for their radiolabeling and in vivo distribution characteristics. We synthesized a $^{99m}Tc$-tricarbonyl precursor with a low oxidation state (I). $^{99m}Tc(CO)_3(H_2O)_3^+$ was then made to react with monomeric and oligomeric glycine for the development of bifunctional chelating sequences for biomolecules. Labeling yields of $^{99m}Tc$-tricarbonyl glycine monomers and oligomers were checked by high-performance liquid chromatography. The labeling yields of $^{99m}Tc$-tricarbonyl glycine and glycine oligomers were more than 95%. We evaluated the characteristics of $^{99m}Tc$-tricarbonyl glycine oligomers by carrying out a lipophilicity test and an imaging study. The octanol-water partition coefficient of $^{99m}Tc$ tricarbonyl glycine oligomers indicated hydrophilic properties. Single-photon emission computed tomography imaging of $^{99m}Tc$-tricarbonyl glycine oligomers showed rapid renal excretion through the kidneys with a low uptake in the liver, especially of $^{99m}Tc$ tricarbonyl triglycine. Furthermore, we verified that the addition of triglycine to prototype biomolecules (AGRGDS and RRPYIL) results in the improvement of radiolabeling yield. From these results, we conclude that triglycine has good characteristics for use as a bifunctional chelating sequence for a $^{99m}Tc$-tricarbonyl-based biomolecular imaging probe.

Synthesis of $^{99m} Tc$-tricarbonyl Precursors for Labeling of Bioactive Molecules

  • Jang, Beom-Su;Kim, Yong-Mi;Cho, Sang-Mu;Shin, Byung-Chul;Park, Sun-Ju;Hong, Young-Don;Gwon, Hui-Jeong;Park, Kyung-Bae;Yun, Hyo-In
    • Nuclear Engineering and Technology
    • /
    • v.34 no.2
    • /
    • pp.146-153
    • /
    • 2002
  • To radiolabel bioactive molecules, we synthesized $^{99m}$Tc-tricarbonyl precursor, [$^{99m}$Tc(CO)$_3$($H_2O$)$_3$]$^{+}$ with a low oxidation state ( I ). The [$^{99m}$Tc(CO)$_3$($H_2O$)$_3$]$^{+}$ was prepared by low pressure carbonylation (1 atm of CO) of [$^{99m}$Tc $O_4$)]$^{[-10]}$ in the presence of NaB $H_4$ resulting in higher than 98% of labeling yield and stability up to 8 hrs. We evaluated the characteristics of $^{99m}$Tc- tricarbonyl labeled bioactive molecules by carrying out in vitro and in vitro study. Prepared [$^{99m}$Tc(CO)$_3$($H_2O$)$_3$]$^{+}$ was then reacted with some ligands of significance in modem diagnostic nuclear medicine and some amino acids. Labeling yields were checked by HPLC and found to be usually high, excluding $^{99m}$Tc-tricarbonyl-MDP, -EDTMP and -mIBG. And the biodistribution properties of $^{99m}$Tc-tricarbonyl complexes applied in rabbit showed different appearance comparing with that of the $^{99m}$Tc-labeling by conventional means. From these results, we conclude that [$^{99m}$Tc(CO)$_3$($H_2O$)$_3$]$^{+}$ is a potential precursor for development of radiopharmaceuticals, especially for labeling of biomolecules.

Synthesis and biological evaluation of tricarbonyl technetium labeled 2-(4-chloro)phenyl-imidazo[1,2-a]pyridine analog (99mTc-CB257) as a TSPO-binding ligand

  • Choi, Ji Young;Jung, Jae Ho;Song, In Ho;Moon, Byung Seok;Lee, Byung Chul;Kim, Sang Eun
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.4 no.2
    • /
    • pp.73-79
    • /
    • 2018
  • In our previous study, tricarbonyl $^{99m}Tc$-labeled TSPO-binding ligand, named $^{99m}Tc$-CB256, having positively charge (+1) was investigated but did not show promising results in in vivo environment despite of a nanomolar binding affinity for TSPO. Because the overall positively charge of $^{99m}Tc$-CB256 would likely interrupt its target protein uptake, we herein designed the neutral tricarbonyl-$^{99m}Tc$ labeled TSPO-binding ligand ($^{99m}Tc$-CB257, 1). $^{99m}Tc$-CB257 was prepared by the facile incorporation of the $[^{99m}Tc(CO)_3]^+$ into a N-(hydroxycarbonylmethyl)-2-picoly moiety in CB257. The radiochemical yield of $^{99m}Tc$-CB257 after HPLC purification was $54.1{\pm}2.4%$ (decay corrected, n = 3). The authentic Re-CB257 (2) was synthesized by using $(NEt_4)_2[Re(CO)_3Br_3]$ in 69.0% yield. The binding affinity of 2 for TSPO was measured in leukocyte and showed approximately 280 times higher than that observed for the positively charged (+1) ligand, Re-CB256 ($K_i=0.57{\pm}0.06nM$ versus $159.3{\pm}8.7nM$, respectively). Our results indicated that 1 can be considered potentially as a new SPECT radiotracer for TSPO-rich cancer and provides the foundation for further in vivo evaluation related with abnormal TSPO-overexpression environments.

Radiolabeling of antibody-mimetic scaffold protein with 99mTc tricarbonyl precursor via hexahistidine (His6)-tag

  • Shim, Ha Eun;Kim, Do Hee;Lee, Chang Heon;Choi, Dae seong;Lee, Dong-Eun
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.5 no.1
    • /
    • pp.11-17
    • /
    • 2019
  • Recently, antibody-like scaffold proteins have received a great deal of interest in diagnosis and therapy applications because of their intrinsic features that are often required for tumor imaging and therapy. Intrinsic issues that are associated with therapeutic application of antibody-like scaffold proteins, particularly in cancer treatment, include an efficient and straightforward radiolabeling for understanding in vivo biodistribution and excretion route, and monitoring therapeutic responses. Herein, we report an efficient and straightforward method for radiolabeling of antibody-like scaffold proteins with the $[^{99m}Tc(OH_2)_3(CO)_3]^+$ ($^{99m}Tc$-tricarbonyl) by using a site-specific direct labeling method via hexahistidine-tag, which is a widely used for general purification of recombinant proteins with His-affinity chromatography. Repebody is a new class of antibody-like scaffold protein that consists of highly diverse leucine-rich repeat (LRR) modules. Although all possible biomedical applications with repebody are ongoing, it's in vivo biodistribution and excretion pathway has not yet been explored. In this study, hexahistidine ($His_6$)-tag bearing repebody (rEgH9) was labeled with [$^{99m}Tc$]-tricarbonyl. Repebody protein was radiolabeled with high radiolabeling efficiency (>90%) and radiolabeled compound was more than 99% pure after purification. These results clearly demonstrate that the present radiolabeling method will be useful molecular imaging study.

Biodistribution of 99mTc Labeled Integrin Antagonist

  • Jang, Beom-Su;Park, Seung-Hee;Shin, In Soo;Maeng, Jin-Soo;Paik, Chang H.
    • Toxicological Research
    • /
    • v.29 no.1
    • /
    • pp.21-25
    • /
    • 2013
  • The selective targeting of an integrin ${\alpha}_v{\beta}_3$ receptor using radioligands may enable the assessment of angiogenesis and integrin ${\alpha}_v{\beta}_3$ receptor status in tumors. The aim of this research was to label a peptidomimetic integrin ${\alpha}_v{\beta}_3$ antagonist (PIA) with $^{99m}Tc(CO)_3$ and to test its receptor targeting properties in nude mice bearing receptor-positive tumors. PIA was reacted with tris-succinimidyl aminotriacetate (TSAT) (20 mM) as a PIA per TSAT. The product, PIA-aminodiacetic acid (ADA), was radiolabeled with $[^{99m}Tc(CO)_3(H_2O)_3]^{+1}$, and purified sequentially on a Sep-Pak C-18 cartridge followed by a Sep-Pak QMA anion exchange cartridge. Using gradient C-18 reverse-phase HPLC, the radiochemical purity of $^{99m}Tc(CO)_3$-ADA-PIA (retention time, 10.5 min) was confirmed to be > 95%. Biodistribution analysis was performed in nude mice (n = 5 per time point) bearing receptor-positive M21 human melanoma xenografts. The mice were administered $^{99m}Tc(CO)_3$-ADA-PIA intravenously. The animals were euthanized at 0.33, 1, and 2 hr after injection for the biodistribution study. A separate group of mice were also co-injected with 200 ${\mu}g$ of PIA and euthanized at 1 hr to quantify tumor uptake. $^{99m}Tc(CO)_3$-ADA-PIA was stable in phosphate buffer for 21 hr, but at 3 and 6 hr, 7.9 and 11.5% of the radioactivity was lost as histidine, respectively. In tumor bearing mice, $^{99m}Tc(CO)_3$-ADA-PIA accumulated rapidly in a receptor-positive tumor with a peak uptake at 20 min, and rapid clearance from blood occurring primarily through the hepatobiliary system. At 20 min, the tumor-to-blood ratio was 1.8. At 1 hr, the tumor uptake was 0.47% injected dose (ID)/g, but decreased to 0.12% ID/g when co-injected with an excess amount of PIA, indicating that accumulation was receptor mediated. These results demonstrate successful $^{99m}TC$ labeling of a peptidomimetic integrin antagonist that accumulated in a tumor via receptor-specific binding. However, tumor uptake was very low because of low blood concentrations that likely resulted from rapid uptake of the agent into the hepatobiliary system. This study suggests that for $^{99m}Tc(CO)_3$-ADA-PIA to be useful as a tumor detection agent, it will be necessary to improve receptor binding affinity and increase the hydrophilicity of the product to minimize rapid hepatobiliary uptake.

Mixed Intramolecular Hydrogen Bonding in Dihydroxythiophene-based Units and Boron and Technetium Chelation

  • Ko, Sang-won;Park, Sang-Hyun;Gwon, Hui-Jeong;Lee, Jun-seong;Kim, Min-Jeong;Kwak, Yeon-ju;Do, Young-kyu;Churchill, David G.
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.2
    • /
    • pp.243-250
    • /
    • 2006
  • Three novel potential metal ion chelating units have been synthesized and characterized: 5-hexylcarbamoyl-3,4-dihydroxythiophene-2-carboxylic acid methyl ester (5), 3-benzyloxy-4-hydroxythiophene-2,5-dicarboxylic acid bis-hexylamide (6), and 3,4-dihydroxythiophene-2,5-dicarboxylic acid bis-hexylamide (7). The crystal structure of 6 was obtained and suggests the presence of three distinct intramolecular hydrogen bonds, namely $[N_{amide}-H{\cdot}{\cdot}{\cdot}O]$ $[O-H{\cdot}{\cdot}{\cdot}O_{amide}]$ and $[N_{amide}-H{\cdot}{\cdot}{\cdot}S]$. Boron chelation with 5, 6 and 7 through the use of $BF_3, \;B(OH)_3 \;or \;B(OMe)_3$ was probed by $^1H$, $^{11}B$, and $^{13}C$ NMR spectroscopy. Technetium (I) chelation with 5, 6 and 7 was also studied via HPLC elutions using $[^{99m}Tc(CO)_3(OH_2)_3]^+$.