• Title/Summary/Keyword: $^{177}Lu$ labeling

Search Result 8, Processing Time 0.019 seconds

Development of bombesin peptide kit for prostate cancer diagnosis and treatment using 64Cu/177Lu.

  • Kim, Mi Hyun;Kim, Min Hwan;Kim, Kwang Il;Kim, Jung Young;Lee, Tae Sup;Kang, Joo Hyun;Lee, Kyo Chul;Lee, Yong Jin
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.3 no.2
    • /
    • pp.59-64
    • /
    • 2017
  • It has been reported that $^{64}Cu$ was radiolabeled with bombesin (BBN) peptide binding to the gastrin releasing peptide receptor expressed in human prostate cancer cells (PC3), confirming tumor target efficacy in mouse model. In this study, we developed the kit for the diagnosis and treatment of prostate cancer that can be used clinically using bombesin peptide available of $^{64}Cu$ and $^{177}Lu$ radioisotope labeling. The NODAGA-galacto-BBN peptide containing the NODAGA chelator and galactose was dispensed into a sterilized glass vial and lyophilized to prepare a kit. The stability of the kit after long-term storage in the $4^{\circ}C$ cold chamber and the radiolabeling efficiency after $^{64}Cu$ or $^{177}Lu$ labeling were confirmed by thin layer chromatography. When labeling with $^{64}Cu$ at the initial stage of storage, labeling efficiency of NODAGA-galacto-BBN peptide kit was over 96%, labeling efficiency was over 90% when $^{177}Lu$ was labeled. At 11 months after storage, the radiolabeling efficiency of kit against $^{64}Cu$ and $^{177}Lu$ was each over 95% and 90%. The cell viability was significantly reduced in the $^{177}Lu$-NODAGA-galacto-BBN treated group compared with the control and $^{177}Lu$ alone treated group in clonogenic assay. In conclusion, the NODAGA-galacto-BBN kit prepared by the lyophilization showed high stability over time and high yield of radioisotope labeling. Also $^{177}Lu$-NODAGA-galacto-BBN confirmed high cytotoxicity to prostate cancer cells. Therefore, the NODAGA-galacto-bombesin kit is expected to be useful for the diagnosis and treatment of prostate cancer patients.

In vivo comparison of Lu-177-labeled phosphonate compounds as potential agents for bone pain palliation in rodents

  • Chang, Young Soo;Lee, Yun-Sang;Kim, Young Ju;Jeong, Jae Min
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.1 no.1
    • /
    • pp.53-61
    • /
    • 2015
  • Lutetium-177 ($T_{1/2}=6.71day$) is an adequate radionuclide for therapy, which has both beta emission ($E_{max}=497keV$) for therapeutic effect and gamma emission (113 and 208 keV) for imaging. $^{177}Lu$ labeled ethylenediamine-N,N,N',N'-tetrakis (methylene phosphonic acid) (EDTMP) and 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraaminomethylenephosphonate (DOTMP) have been proposed as radiopharmaceuticals for bone pain palliation. In this study, we compared radiochemistry and biodistribution of $^{177}Lu$-EDTMP and $^{177}Lu$-DOTMP. EDTMP and DOTMP were synthesized, and 1 mg of each was labeled with $^{177}Lu$ at pH 7~8 with high efficiency (>98%). For comparative biodistribution studies, $^{177}Lu$-EDTMP or $^{177}Lu$-DOTMP were injected into ICR-mice through tail vein, and then biodistribution data were obtained as percentages of injected dose per gram of tissue (% ID/g). Urine excretions of both agents in mice were checked for 7 days. Rat images were also obtained after injection of $^{177}Lu$-EDTMP or $^{177}Lu$-DOTMP. $^{177}Lu$-DOTMP (100% at 1 min) showed faster labeling than $^{177}Lu$-EDTMP (100% at 30 min). Both of them were stable at least for 21 days at room temperature. High bone uptakes were found for both $^{177}Lu$-EDTMP and $^{177}Lu$-DOTMP: 38.0 and 34.1% ID/g at 3 hr, respectively; and 33.2 and 18.8% ID/g at 7 day, respectively. Rapid excretions to urine were found for both agents ($^{177}Lu$-EDTMP: 56%, $^{177}Lu$-DOTMP: 63% at 1 day). Other organs showed very low uptakes. Rat images of both $^{177}Lu$-EDTMP and $^{177}Lu$-DOTMP showed high bone uptakes and low soft tissue uptakes. In conclusion, both $^{177}Lu$-EDTMP and $^{177}Lu$-DOTMP showed high potential as bone pain palliation agents. $^{177}Lu$-EDTMP showed higher bone uptake and slower bone clearance in mice than those of $^{177}Lu$-DOTMP.

Antibody radiolabeling with diagnostic Cu-64 and therapeutic Lu-177 radiometal

  • Abhinav Bhise;Jeongsoo Yoo
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.8 no.1
    • /
    • pp.45-49
    • /
    • 2022
  • With the development of monoclonal antibodies, therapeutic or diagnostic radioisotope has been successfully delivered at tumor sites with high selectivity for antigens. Different approaches have been applied to improve the tumor-to-normal ratio by considering the in vivo stability of radioimmunoconjugates as a prerequisite. Various stable and inert antibody radiolabeling techniques for radioimmunoconjugate preparation have been extensively evaluated to enhance in vivo stability. Antibody radiolabeling techniques should be rapid and easy; they should not disrupt the immunoreactivity and in vivo behavior of antibodies, which are coupled with a bifunctional chelator (BFC) to stably coordinate with a radiometal. For the design of BFCs, radiometal coordination properties must be considered. However, various diagnostic radionuclides, such as 89Zr, 64Cu, 68Ga, 111ln, and 99mTc, or therapeutic radionuclides, such as 177Lu, 67Cu, 90Y, and 225Ac, have been increasingly used for antibody radiolabeling. In addition to useful radionuclides, 64Cu and 177Lu with the most accessible or the highest production rates in many countries should be considered. In this review, we mainly discussed antibody radiolabeling techniques and conditions that involve 64Cu and 177Lu radiometals.

Novel Bombesin Analogues Conjugated with DOTA-Ala(SO3H)-4 aminobenzoic acid and DOTA-Lys(glucose)-4 aminobenzoic acid: Synthesis, Radiolabeling, and Gastrin Releasing Peptide Receptor Binding Affinity

  • Lim, Jae Cheong;Choi, Sang Mu;Cho, Eun Ha;Kim, Jin Joo
    • Journal of Radiation Industry
    • /
    • v.7 no.2_3
    • /
    • pp.191-200
    • /
    • 2013
  • In this study, a novel bombesin (BBN) analogues, DOTA-Ala($SO_3H$)-4 aminobenzoyl-Gln-Trp-Ala-Val-Gly-His-Leu-Met-$NH_2$ (DOTA-sBBN) and DOTA-Lys(glucose)-4 aminobenzoyl-Gln-Trp-Ala-Val-Gly-His-Leu-Met-$NH_2$ (DOTA-gluBBN), were synthesized and radiolabeled, and their binding affinities were evaluated. Peptides were prepared by a solid phase synthesis method and their purities were over 98%. DOTA is the chelating agent for $^{177}Lu$-labeling, and the DOTA-conjugated peptides were radiolabeled with $^{177}Lu$ by a high radiolabeling yield (>98%). The Log P values of DOTA-sBBN and DOTA-gluBBN were -2.20 and -2.79, respectively. 50.41% of $^{177}Lu$-DOTA-sBBN and 72.97% of $^{177}Lu$-DOTA-gluBBN were left undegraded by the serum incubation at $37^{\circ}C$ for 48 hr. A competitive displacement of $^{125}I-[Tyr^4]$-BBN on the PC-3 human prostate carcinoma cells revealed that 50% inhibitory concentration ($IC_{50}$) were 1.46 nM of DOTA-sBBN and 4.67 nM of DOTA-gluBBN indicating a highly nanomolar binding affinity for GRPR. Therefore, it is concluded that $^{177}Lu$-DOTA-sBBN and $^{177}Lu$-DOTA-gluBBN can be potential candidates as a targeting modality for the Gastrin-releasing peptide receptor (GRPR)-over-expressing tumors, and further studies to evaluate their biological and pharmacological characteristics are needed.

Dosimetric Analysis of a Phase I Study of PSMA-Targeting Radiopharmaceutical Therapy With [177Lu]Ludotadipep in Patients With Metastatic Castration-Resistant Prostate Cancer

  • Seunggyun Ha;Joo Hyun O;Chansoo Park;Sun Ha Boo;Ie Ryung Yoo;Hyong Woo Moon;Dae Yoon Chi;Ji Youl Lee
    • Korean Journal of Radiology
    • /
    • v.25 no.2
    • /
    • pp.179-188
    • /
    • 2024
  • Objective: 177Lutetium [Lu] Ludotadipep is a novel prostate-specific membrane antigen targeting therapeutic agent with an albumin motif added to increase uptake in the tumors. We assessed the biodistribution and dosimetry of [177Lu]Ludotadipep in patients with metastatic castration-resistant prostate cancer (mCRPC). Materials and Methods: Data from 25 patients (median age, 73 years; range, 60-90) with mCRPC from a phase I study with activity escalation design of single administration of [177Lu]Ludotadipep (1.85, 2.78, 3.70, 4.63, and 5.55 GBq) were assessed. Activity in the salivary glands, lungs, liver, kidneys, and spleen was estimated from whole-body scan and abdominal SPECT/CT images acquired at 2, 24, 48, 72, and 168 h after administration of [177Lu]Ludotadipep. Red marrow activity was calculated from blood samples obtained at 3, 10, 30, 60, and 180 min, and at 24, 48, and 72 h after administration. Organand tumor-based absorbed dose calculations were performed using IDAC-Dose 2.1. Results: Absorbed dose coefficient (mean ± standard deviation) of normal organs was 1.17 ± 0.81 Gy/GBq for salivary glands, 0.05 ± 0.02 Gy/GBq for lungs, 0.14 ± 0.06 Gy/GBq for liver, 0.77 ± 0.28 Gy/GBq for kidneys, 0.12 ± 0.06 Gy/GBq for spleen, and 0.07 ± 0.02 Gy/GBq for red marrow. The absorbed dose coefficient of the tumors was 10.43 ± 7.77 Gy/GBq. Conclusion: [177Lu]Ludotadipep is expected to be safe at the dose of 3.7 GBq times 6 cycles planned for a phase II clinical trial with kidneys and bone marrow being the critical organs, and shows a high tumor absorbed dose.

Simple measurement the chelator number of antibody conjugates by MALDI-TOF MS

  • Shin, Eunbi;Lee, Ji Woong;Lee, Kyo Chul;Shim, Jae Hoon;Cha, Sangwon;Kim, Jung Young
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.3 no.2
    • /
    • pp.54-58
    • /
    • 2017
  • Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry(MALDI-TOF MS) is one of the powerful methods that enable analysis of small molecules as well as large molecules up to about 500,000 Da without severe fragmentation. MALDI-TOF MS, thus, has been a very useful an analytical tool for the confirmation of synthetic molecules, probing PTMs, and identifying structures of a given protein. In recent nuclear medicine, MALDI-TOF MS liner ion mode helps researcher calculate the average number of chelator(or linkage) per an antibody conjugate, such as DOTA-(or DFO-) trastuzumab for labeling a medical radioisotope. This simple technique can be utilized to improve the labeling method and control the quality at the development of antibody-based radiopharmaceuticals, which is very effected to diagnosis and therapy for in vivo tumor cells, with radioisotopes like $^{89}Zr$, $^{64}Cu$, and 177Lu. To minimize the error, MALDI-TOF MS measurement is repeatedly performed for each sample in this study, and external calibration is carried out after data collection.

PSMA Inhibitors for Nuclear Imaging and Radiotherapy of Prostate Cancer

  • Sajid Mushtaq;Tugsuu Uyanga;Park Ji Ae;Jung Young Kim
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.9 no.1
    • /
    • pp.23-33
    • /
    • 2023
  • Prostate cancer ranks as the world's second most frequently diagnosed cancer among men, and is responsible for the fifth highest number of cancer-related deaths in this population. The development of effective diagnostic and therapeutic approaches for prostate cancer remains a major challenge in the field of oncology. Over the past few years, the prostate-specific membrane antigen (PSMA) has raised as a hopeful tracer for the diagnosis and treatment of prostate cancer.Various radioisotopes, such as 131I, 99mTc, 68Ga, and 177Lu, have been used to label PSMA analogues, with varying degrees of success. Among these, 68Ga-PSMA-11 and 177Lu-PSMA-617 have emerged as the most promising radioligands for clinical use. Recently, researchers have been exploring the use of other radioisotopes, such as 211At, 89Zr, 64/67Cu, and 203/212Pb, for the labeling of PSMA-targeted radioligands. These radioisotopes have unique properties that may offer advantages over existing radioligands, such as longer half-lives, higher specific activities, and different emission profiles. Efforts are currently underway to develop these radiopharmaceuticals and make them more widely available for clinical use. These exciting developments highlight the potential of PSMA-targeted radioligands for the diagnosis and treatment of prostate cancer, and provided significant implications for the management of this disease in the future. The current study aims to provide a comprehensive summary of the latest research and clinical applications of radiolabeled PSMA inhibitors for diagnoses and therapy of prostate cancer, emphasizing the exciting developments in the field and their potential impact on clinical practice.

Synthesis and Evaluation of a Ligand Targeting the Somatostatin Receptor for Drug Delivery to Tumor Cell (암세포 내로의 약물 전달 증진 목적의 신규 소마토스타틴 수용체 타겟리간드 합성 및 평가)

  • Choi, SunJu;Hong, YoungDon;Lee, SoYoung;Jung, SungHee
    • Journal of Radiation Industry
    • /
    • v.9 no.4
    • /
    • pp.193-198
    • /
    • 2015
  • Most of targeted therapies block the action of certain enzymes, proteins, or other molecules involved in the growth and spread of cancer cells to produce its cytotoxic effect. Either small molecule drugs or monoclonal antibodies are mostly used in targeted therapies. Unfortunately, targeted therapy has a certain degree of unwanted side effect like other cytotoxicity inducing chemotherapies. To overcome and to reduce unwanted side effects during a cancer therapy, recently radiopeptide therapies has got the worlds' attraction for the tumor targeting modalities due to its beneficial effect on less side effect compared to cytotoxic chemotherapies. Among radiopeptide therapies, $^{177}Lu$-DOTATATE is a major modality as an effective one invented so far in treating neuroendocrine tumor (NET) and it has been in clinical trials at least one decade. Although it does have rather effective therapeutic effect on NET, it has less effective in rather large solid tumor. There are many ways to improve or increase therapeutic effect of radiopeptide are a finding the potent small molecules to target the tumor site selectively, or a labeling with radioisotope of emitting high energy, or an improving its biological half-life by introducing different moieties to increase lipophilicity. Present study was focus to increase a biological half-life of radio somatostatin which will target the somatostatin receptor by altering the bifunctional chelator (BFCA) by introducing lipophilic moiety to the somatostatin, which would make the labeled peptide stay longer in the tumor site and thus it can intensify the therapeutic effect on tumor cell itself and around tissues.