• Title/Summary/Keyword: $^{13}C-NMR$ Analysis

Search Result 413, Processing Time 0.023 seconds

$A^{13}$ CNMR Determination of Monomer Composition in EP Copolymers, EPB and EPDM Terpolymers (EP 공중합체, EPB 및 EPDM 삼중합체의 단량체조성에 관한 $^{13}C$-NMR 분석)

  • Lee, Kang-Bong;An, Seong-Uk;Rhee, Jae-Seong;Kweon, Jeehye;Choi, Young-Sang
    • Analytical Science and Technology
    • /
    • v.7 no.1
    • /
    • pp.91-102
    • /
    • 1994
  • The monomer compositions in a series of propylene heterophasic copolymer, propylene random copolymer, propylene random terpolymer and ethylene-propylene-ENB terpolymer have been determined from $^{13}C-NMR$ spectra. The simplified and highly resolved $^{13}C-NMR$ spectra made it possible to assign unambiguousely and calculate the monomer composition. A complete sets of NMR chemical shift assignments and the way to measure the quantity of monomer are newly given in diverse polymers. Furthermore complete dyad, triad, tetrad and pentad distributions have been able to be determined. These NMR quantitative analytical results for monomer compostition have consistent with those from Infrared spectral data.

  • PDF

Investigation of Gas Hydrate Crystallization and Structure Analysis by $^{13}C$ NMR with Surfactant (계면활성제 첨가에 따른 가스하이드레이트 생성 결정과 $^{13}C$ NMR 구조 분석 고찰)

  • Cho, Byoung-Hak;Lee, Young-Chul;Shin, Myung-Uk;Lee, Sung-Han
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.395-398
    • /
    • 2006
  • 동일한 조건에서 순수한 물과 계면활성제인 DBS(dodecyl bezebe sulfonic acid) 25ppm을 첨가한 물에 대해 천연가스 하이드레이트를 제조시 가스의 함유량은 각각 80배와 160배로 2배의 차이가 발생한다. 이에 대해 본 연구에서는 결정 생성 형태의 관찰 및 $^{13}C$ NMR을 사용한 분광학적 구조 분석으로부터 이의 원인을 찾고자 하였다. 순수한 물과 DBS를 미량 함유한 물을 사용하여 whiskery 결정을 생성시킨 결과, 순수한 물을 사용한 경우보다 섬유 다발 형태가 매우 활발한 형태의 결정 형태로 가스하이드 레이트가 생성됨을 알 수 있었다. 또한 400MHz의 NMR을 사용한 분광학적 구조 분석으로부터 천연가스하이드레이트는 구조-I과 구조-II가 혼재된 결정 구조를 이루고 있음을 알 수 있었다. 또한 DBS를 함유한 물에 의해 제조된 천연가스하이드레이트는 arge cage를 많이 생성시키는 역할을 하는 분석 결과를 보였고 이것이 가스 함유량을 증대시키는 원인 중의 하나임을 알 수 있었다.

  • PDF

INTRINSIC NMR ISOTOPE SHIFTS OF CYCLOOCTANONE AT LOW TEMPERATURE (저온에서의 싸이클로옥타논에 대한 고유동위원소 효과)

  • Jung, Miewon
    • Analytical Science and Technology
    • /
    • v.7 no.2
    • /
    • pp.213-224
    • /
    • 1994
  • Several isotopomers of cyclooctanone were prepared by selective deuterium substitution. Intrinsic isotope effects on $^{13}C$ NMR chemical shifts of these isotopomers were investigated systematically at low temperature. These istope effects were discussed in relation to the preferred boat-chair conformation of cyclooctanone. Deuterium isotope effects on NMR chemical shifts have been known for a long time. Especially in a conformationally mobile molecule, isotope perturbation could affect NMR signals through a combination of isotope effects on equilibria and intrinsic effects. The distinction between intrinsic and nonintrinsic effects is quite difficult at ambient temperature due to involvement of both equilibrium and intrinsic isotope effects. However if equilibria between possible conformers of cyclooctanone are slowed down enough on the NMR time scale by lowering temperature, it should be possible to measure intrinsic isotope shifts from the separated signals at low temperature. $^{13}C$ NMR has been successfully utilized in the study on molecular conformation in solution when one deals with stable conformers or molecules were rapid interconversion occurs at ambient temperature. The study of dynamic processes in general requires analysis of spectra at several temperature. Anet et al. did $^1H$ NMR study of cyclooctanone at low temperature to freeze out a stable conformation, but were not able initially to deduce which conformation was stable because of the complexity of alkyl region in the $^1H$ NMR spectrum. They also reported the $^1H$ and $^{13}C$ NMR spectra of the $C_9-C_{16}$ cycloalkanones with changing temperature from $-80^{\circ}C$ to $-170^{\circ}C$, but they did not report a variable temperature $^{13}C$ NMR study of cyclooctanone. For the analysis of the intrinsic isotope effect with relation to cylooctanone conformation, $^{13}C$ NMR spectra are obtained in the present work at low temperatures (up to $-150^{\circ}C$) in order to find the chemical shifts at the temperature at which the dynamic process can be "frozen-out" on the NMR time scale and cyclooctanone can be observed as a stable conformation. Both the ring inversion and pseudorotational processes must be "frozen-out" in order to see separate resonances for all eight carbons in cyclooctanone. In contrast to $^1H$ spectra, slowing down just the ring inversion process has no apparent effects on the $^{13}C$ spectra because exchange of environments within the pairs of methylene carbons can still occur by the pseudorotational process. Several isotopomers of cyclooctanone were prepared by selective deuterium substitution (fig. 1) : complete deuterium labeling at C-2 and C-8 positions gave cyclooctanone-2, 2, 8, $8-D_4$ : complete labeling at C-2 and C-7 positions afforded the 2, 2, 7, $7-D_4$ isotopomer : di-deuteration at C-3 gave the 3, $3-D_2$ isotopomer : mono-deuteration provided cyclooctanone-2-D, 4-D and 5-D isotopomers : and partial deuteration on the C-2 and C-8 position, with a chiral and difunctional case catalyst, gave the trans-2, $8-D_2$ isotopomer. These isotopomer were investigated systematically in relation with cyclooctanone conformation and intrinsic isotope effects on $^{13}C$ NMR chemical shifts at low temperature. The determination of the intrinsic effects could help in the analysis of the more complex effects at higher temperature. For quantitative analysis of intrinsic isotope effects, the $^{13}C$ NMR spectrum has been obtained for a mixture of the labeled and unlabeled compounds because the signal separations are very small.

  • PDF

In Vivo $^{13}C$-NMR Spectroscopic Study of Polyhydroxyalkanoic Acid Degradation Kinetics in Bacteria

  • Oh, Jung-Sook;Choi, Mun-Hwan;Yoon, Sung-Chul
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.6
    • /
    • pp.1330-1336
    • /
    • 2005
  • Polyhydroxyalkanoic acid (PHA) inclusion bodies were analyzed in situ by $^{13}C$-nuclear magnetic resonance ($^{13}C$-NMR) spectroscopy. The PHA inclusion bodies studied were composed of poly(3-hydroxybutyrate) or poly(3hydroxybutyrate-co-4-hydroxybutyrate), which was accumulated in Hydrogenophaga pseudoflava, and medium-chain-length PHA (MCL-PHA), which was accumulated in Pseudomonas fluorescens BM07 from octanoic acid or 11-phenoxyundecanoic acid (11-POU). The quantification of the $^{13}C$-NMR signals was conducted against a standard compound, sodium 2,2-dimethyl-2-silapentane-5-sulfonate (DSS). The chemical shift values for the in vivo NMR spectral peaks agreed well with those for the corresponding purified PHA polymers. The intracellular degradation of the PHA inclusions by intracellular PHA depolymerase(s) was monitored by in vivo NMR spectroscopy and analyzed in terms of first-order reaction kinetics. The H. pseudoflava cells were washed for the degradation experiment, transferred to a degradation medium without a carbon source, but containing 1.0 g/l ammonium sulfate, and cultivated at $35^{\circ}C$ for 72 h. The in vivo NMR spectra were obtained at $70^{\circ}C$ for the short-chain-length PHA cells whereas the spectra for the aliphatic and aromatic MCL-PHA cells were obtained at $50^{\circ}C\;and\;80^{\circ}C$, respectively. For the H. pseudoflava cells, the in vivo NMR kinetics analysis of the PHA degradation resulted in a first-order degradation rate constant of 0.075/h ($r^{2}$=0.94) for the initial 24 h of degradation, which was close to the 0.050/h determined when using a gas chromatographic analysis of chloroform extracts of sulfuric acid/methanol reaction mixtures of dried whole cells. Accordingly, it is suggested that in vivo $^{13}C$-NMR spectroscopy is an important tool for studying intracellular PHA degradation in terms of kinetics.

A Study on Classification of Fish Oil Types and Its Usage by 13C-NMR Spectra and Fatty Acids Analysis (13C NMR 분석 및 지방산 분석을 통한 어유의 종류 구분 및 사용 실태에 관한 연구)

  • Cho, Eun-Ah;Lim, Sung-Jun;Oh, Tae-Heon;Ahn, Hyun-Joo;Yuk, Soo-Jin;Choi, Jin-Uk;Cha, Yun-Hwan;Lee, Young-Sang
    • The Korean Journal of Food And Nutrition
    • /
    • v.26 no.3
    • /
    • pp.352-357
    • /
    • 2013
  • This study estimates the classification criteria which distinguishes the types of omega-3 health functional foods, fish oils and fish oil usages through $^{13}C$-NMR spectra and fatty acids contents analysis. The major fatty acids of omega-3, eicosapentaenoic acid (EPA, $C_{20:5}$) and docosahexaenoic acid (DHA, $C_{22:6}$) are being analyzed. 10 ethyl ester (EE) forms and 10 triglyceride (TG) forms are the most common types of fish oils for 20 omega-3 products. Gas chromatography (GC) analysis generally shows the matching EPA and DHA contents of the products listed on the notation. But EE form contents of EPA and DHA are higher and are more varied than the TG form. Most of the samples of EPA/DHA ratio show different content ratios of indicated on the products when comparing with standards. The $^{13}C$-NMR analysis of EPA and DHA on sn-1,3 and sn-2 carbonyl peak position with fish oil triglycerides display whether the reconstituted triglycerides (rTG) are being confirmed or not. As a result of the 9 TG form, the 10 TG products showed similar values: EPA sn-1, 3; 13.46~15.66, sn-2; 3.00~4.52, DHA sn-1, 3; 2.43~4.40, sn-2; 3.84~6.36. But one product showed lower contents (EPA: sn-1, 3; 5.88, sn-2; 2.86, DHA sn-1, 3; 2.29, sn-2; 5.95) of EPA, thus it can be considered a different type of oil and only matched six products according to the label. This study is intended to provide basic materials which identify the status for the types and quality of omega-3 fish oil products according to fatty acids profiles and the $^{13}C$-NMR spectrum confirmed the location specificity of EPA and DHA.

Structural Analysis of Petroleum Fractions by Near-Infrared and $^{13}C$-NMR Spectroscopy (근적외선과 $^{13}C$-핵자기 공명 분광학에 의한 석유유분 구조분석)

  • Choi, Ju-Hwan;Kim, Hai-Dong;Choi, Young-Sang
    • Analytical Science and Technology
    • /
    • v.9 no.2
    • /
    • pp.168-178
    • /
    • 1996
  • Molecular structures of petroleum fractions(diesel fuel, bunker-C oil, lubricant base stocks) have been analyzed and compared in terms of the compositions (aromatics, naphtherucs, paraffinics), aromatics(benzene-nuclear and bonded alkyl groups), C2(methylene) carbon atoms % $C_{\alpha}$ and $C_{\beta}$ carbon stom % in alkyl groups and paraffins(branched and normal) by near-infrared and $^{13}C$-NMR spectroscopy.

  • PDF

Synthesis and Analysis of 6,6-dichlorobicyclo[3, 1, 0]hexane-3-carboxylic acid (6,6-Dichlorobicyclo[3, 1, 0]hexane-3-carboxylic acid의 합성과 분석)

  • Lee, Kwang-Soo;Yang, Jae-Kun
    • Analytical Science and Technology
    • /
    • v.14 no.1
    • /
    • pp.1-7
    • /
    • 2001
  • 6,6-Dichlorobicyclo[3, 1, 0]hexane-3carboxylic acid was synthesized by dichlorocarbene addition into 3-cyclopentenecarboxylic acid using BTEA.Cl as phase transfer catalyst. $^1H$ NMR $^{13}C$ NMR data analyst showed that this compound had boat-like conformation and carboxyl group existed as trans form.

  • PDF

13C-NMR Spectroscopy of Urea-Formaldehyde Resin Adhesives with Different Formaldehyde/Urea Mole Ratios

  • Park, Byung-Dae;Lee, Sang M.;Park, Jong-Young
    • Journal of the Korean Wood Science and Technology
    • /
    • v.36 no.2
    • /
    • pp.63-72
    • /
    • 2008
  • As a part of abating formaldehyde emission of urea-formaldehyde (UF) resin adhesive, this study was conducted to investigate chemical structures of UF resin adhesives with different formaldehyde/urea (F/U) mole ratios, using carbon-13 nuclear magnetic resonance ($^{13}C$-NMR) spectroscopy. UF resin adhesives were synthesized at four different F/U mole ratios such as 1.6, 1.4, 1.2, and 1.0 for the analysis. The analysis $^{13}C$-NMR spectroscopy showed that UF resin adhesives with higher F/U mole ratios (i.e., 1.6 and 1.4) had two distinctive peaks, indicating the presence of dimethylene ether linkages and methylene glycols, a dissolved form of free formaldehyde. But, these peaks were not detected at the UF resins with lower F/U mole ratios (i.e., 1.2 and 1.0). These chemical structures present at the UF resins with higher F/U mole ratios indicated that UF resin adhesive with higher F/U mole ratio had a greater contribution to the formaldehyde emission than that of lower F/U mole ratio. Uronic species were detected for all UF resins regardless of F/U mole ratios.