• 제목/요약/키워드: $^{13}C$ NMR chemical shifts

검색결과 60건 처리시간 0.019초

A Systematic NMR Determination of α-D-Glucooligosaccharides, Effect of Linkage Type, Anomeric Configuration and Combination of Different Linkages Type on 13C Chemical Shifts for the Determination of Unknown Isomaltooligosaccharides

  • Goffin, Dorothee;Bystricky, Peter;Shashkov, Alexander S.;Lynch, Mary;Hanon, Emilien;Paquot, Michel;Savage, Angela V.
    • Bulletin of the Korean Chemical Society
    • /
    • 제30권11호
    • /
    • pp.2535-2541
    • /
    • 2009
  • Prebiotic isomaltooligosaccharide preparations contain $\alpha$-D-glucooligosaccharides comprising isomaltooligosaccharides (IMOs) and non-prebiotic maltooligosaccharides (MOs). They are both glucose oligosaccharides characterized by their degree of polymerization (DP) value (from 2 to $\sim$10), linkages types and positions (IMOs: $\alpha$-(1$\rightarrow$2, 3, 6 and in a lower proportion internal 1$\rightarrow$4) linkages, MOs: α-(1$\rightarrow$4) linkages). Their structure is the key factor for their prebiotic potential. In order to determine and elucidate the exact structure of unknown IMOs and MOs, unambiguous assignments of $^{13}C$ and $^1H$ chemical shifts of commercial standards, representative of IMOs and MOs diversity, have been determined using optimized standard one and two-dimensional experiments such as $^1H$ NMR, $^{13}C$ NMR, APT and ${^1}H-{^1}H$ COSY, TOCSY, NOESY and <$^1H-{^{13}}C$ heteronuclear HSQC, HSQC-TOCSY, and HMBC. Here we point out the differential effect of substitution by a glucose residue at different positions on chemical shifts of anomeric as well as ring carbons together with the effect of the reducing end configuration for low DP oligosaccharides and diasteroisotopic effect for H-6 protons. From this study, structural $^{13}C$ specific spectral features can be identified as tools for structural analysis of isomaltooligosaccharides.

Ab initio Nuclear Shielding Calculations for Some X-Substituted Silatranes Using Gauge-Including Atomic Orbitals

  • 김동희;이미정
    • Bulletin of the Korean Chemical Society
    • /
    • 제18권9호
    • /
    • pp.981-985
    • /
    • 1997
  • 13C, 15N, and 29Si NMR chemical shifts have been computed for selected X-substituted silatranes (X=Cl, F, H, CH3) using Gauge-Including Atomic Orbitals (GIAO) at the Hartree-Fock level of theory. The isotropic 13C chemical shifts are largely insensitive to substituent-induced structural changes. In this study, the isotropic 13C chemical shifts between 1-methyl- and 1-hydrogensilatranes by GIAO-SCF calculation at the HF/6-31G level are very similar. But the results of 1-chloro- and 1-fluorosilatranes are about 4 ppm different from the experimental values. In contrast, the isotropic 15N and 29Si chemical shifts and the chemical shielding tensors are quite sensitive to substituent-induced structural changes. These trends are consistent with those of the experiment. The isotropic 15N chemical shift demonstrates a very clear correlation with Si-N distance. But in case of 29Si the correlations are not as clean as for the 15N chemical shift; the calculated variation in the 29Si chemical shift is much larger.

Isotropic NMR Shifts in Some Pyridine-Type Ligands Complexed with Paramagnetic Undecatungstocobalto(Ⅱ)silicate and Undecatungstonickelo(Ⅱ) silicate Anions. Identifications of Dumbbell-Shaped 4,$4^{\prime}$-Bipyridyl Complexes

  • Moonhee Ko;Gyung Ihm Rhyu;Hyunsoo So
    • Bulletin of the Korean Chemical Society
    • /
    • 제14권4호
    • /
    • pp.500-506
    • /
    • 1993
  • $^1H$ and $^{13}C$ NMR spectra for pyridine, ${\beta}$-and ${\gamma}$-picoline, pyrazine, and 4,4'-bipyridyl complexed with paramagnetic undecatungstocobalto(II)silicate and undecatungstonickelo(II)silicate anions are reported. For these complexes the ligand exchange is slow on the NMR time scale and the pure resonance lines have been observed at room temperature. The isotropic shifts in nickel complexes can be interpreted in terms of contact shifts by ${\sigma}$-electron delocalization. Both contact and pseudocontact shifts contribute to the isotropic shifts in cobalt complexes. The contact shifts, which are obtained by subtracting the pseudocontact shifts from the isotropic shifts, require both ${\sigma}$-and ${\pi}$-electron delocalization from the cobalt ion. Slow ligand exchange has also allowed us to identify the species formed when bidentate ligands react with the heteropolyanions. Pyrazine forms a 1 : 1 complex, while 4,4'-bipyridyl forms both 1 : 1 and dumbbell-shaped 1 : 2 complexes.

Contact-Only and Dipolar-Only Mixtures of Lanthanide NMR Shift Reagents

  • Lee, Man-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • 제7권6호
    • /
    • pp.433-438
    • /
    • 1986
  • Two new types of NMR shift reagents, one giving dipolar-only and the other giving contact-only shifts, can be prepared simply by mixing two appropriate $Ln(fod)_3$(Ln = Pr, Nd, Eu, and Yb) reagents in certain ratios. The $^1H$ and $^{13}C$ NMR spectra of pyridine-type substrates, quinoline and isoquinoline, whose paramagnetic shifts are normally a composite of contact and dipolar contributions with single lanthanide shift reagents, show the feasibility of this approach.

Phenol성(性) 화합물(化合物)의 $^{13}C$-핵자기(核磁氣) 공명(共鳴)(I) -Phenol성(性) 화합물(化合物)의 Chemical Shift에 관(關)한 연구(硏究)- ($^{13}C-Nuclear$ Magnetic Resonance of the Phenolic Compounds (I) -A Systematic Evaluation of the Chemical Shifts of the Phenolic Compounds-)

  • 안병준
    • 생약학회지
    • /
    • 제8권1호
    • /
    • pp.17-21
    • /
    • 1977
  • $^{13}C-NMR$ behaviors of phenolic compounds such as phenol, catechol, pyrogallol, resorcine, phoroglucine and hydroquinone were studied. From the study on the effects of OH-substitution on benzene and its dervatives it was found that the additivity rule can be applied to the ortho-and para-effect but not to the meta-effect for the OH-function. The empirically calculated chemical shifts regarding the o-and p-effects coincide very well with the results of measurement. The chemical shifts of the phenolic compounds can be classified into three types. 1) Catechol-type C-1 and C-2 145 ppm C-3 and C-6 116-107 ppm 2) Pyrogallol-type C-1 132ppm C-2 and C-6 146ppm C-3 and C-5 106ppm 3) Resorcin-type C-1 and C-3 159ppm C-2 103-95ppm C-4 and C-6 107ppm

  • PDF

Solid-state Chracterization of the HIV Protease Inhibitor

  • Kim, Yong-Ae;Kim, Ae-Ri
    • Bulletin of the Korean Chemical Society
    • /
    • 제23권12호
    • /
    • pp.1729-1732
    • /
    • 2002
  • The LB71350,(3S, 4R)-Epoxy-(5S)-[[N-(1-methylethoxy)carbonyl]-3-(methylsulfonyl)-L-valinyl]amino]-N-[2-methyl-(1R)-[(phenyl)carbonylpropyl-6-phenylhexanamide, is a novel HIV protease inhibitor. Its equilibrium solubility at room temperature was less than $40{\mu}g/mL.$ It was speculated that the low aqueous solubility might be due to the high crystalline lattice energy resulting from intermolecular hydrogen bonds. The present study was carried out to learn the solid-state characteristics of LB71350 using analytical methods such as NMR, FT-IR and XRD. $^{13}C$ Solid-state NMR, solution NMR, and FT-IR spectra of the various solid forms of LB71350 were used to identify the conformation and structure of the solid forms. The chemical shifts of $^{13}C$ solid-state NMR spectra suggest that the crystalline form might have 3 intermolecular hydrogen bondings between monomers.

NMR Studies of Metal-binding Luteinizing Hormone Releasing Hormone

  • Won, Ho-Shik
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권11호
    • /
    • pp.4021-4026
    • /
    • 2011
  • Functions of the luteinizing hormone releasing hormone (LHRH) and its induced release by divalent metal ions have received great attention because this neurotransmitter subsequently regulates the secretion of luteinizing hormone (LH). Metal-LHRH complexes were synthesized by addition of various Cu(II),Ni(II),Zn(II) ions into LHRH in order to understand how the induced release of LHRH is possible. The degree of complexation was monitored by $^1H$, $^{13}C$-NMR chemical shifts, and final products were identified by Mass spectrometry. Solutionstate structure determination of Zn(II)-LHRH out of metal-complexes was accomplished by using NMR and NMR-based distance geometry (DG). Interproton distance information from nuclear Overhauser effect spectroscopy was utilized for structure determination. Structure obtained in this study has a cyclic conformation exhibiting a specific ${\alpha}$-helical turn with residue numbers His[2]-Leu[7] out of 10 amino acids. Comparison of chemical shifts and EPR studies of Ni(II),Cu(II)-LHRH complexes exhibit that these metal complexes have 4-coordination geometry.

Dynamic Structure of Bacteriorhodopsin Revealed by $^{13}C$ Solid-state NMR

  • Saito, Hazime;Yamaguchi, Satoru;Tuzi, Satoru
    • Journal of Photoscience
    • /
    • 제9권2호
    • /
    • pp.110-113
    • /
    • 2002
  • We demonstrate here a dynamic structure of bacteriorhodopsin (bR) as revealed by $^{13}$ C NMR studies on [3_$^{13}$ C]_,[1-$^{13}$ C]Ala- and/or Val-labeled wild type and a variety of site-directed mutants at ambient temperature. For this purpose, well-resolved (up to twelve) I$^{13}$ C NMR peaks were assigned with reference to the displacement of peaks due to the conformation-dependent I$^{13}$ C chemical shifts and reduced peak-intensities due to site-directed mutations. Revealed bR structure was not rigid as anticipated from 2D crystals of hexagonal array but a dynamically heterogeneous, undergoing a variety of local fluctuations depending upon specific site with frequency range of 10$^2$ -10$^{8}$ Hz. In particular, dynamics- dependent suppression of peaks turned out to be very sensitive to the motion of 10$^{-4}$ s and 10$^{-5}$ s interfered with frequency of magic angle spinning and proton decoupling, respectively. It is also noteworthy that such dynamic feature is strongly dependent upon the manner of 2D crystalline packing: $^{13}$ C NMR peaks of monomeric bR yielded either highly broadened or completely suppressed signals, depending upon the type of $^{13}$ C-labeled amino-acid residues.

  • PDF