• Title/Summary/Keyword: $^{123}I$

Search Result 801, Processing Time 0.029 seconds

Comparison of Visual- and Automatic Coregistration with MR Template based ROI Methods for Measurement of Specific Striatal Binding Ratio (SBR) in I-123 IPT SPECT

  • 주라형;서태석;최보영;이형구;김재승;문대혁
    • Proceedings of the KSMRM Conference
    • /
    • 2002.11a
    • /
    • pp.107-107
    • /
    • 2002
  • 목적: I-123 IPT SPECT에서 striatum에 ROI를 설정하여 Strial Binding Ratio를 측정하기 위해 사용되는 육안적인 방법과 MR Template based Coregistration 방법을 비교 평가하였다. 대상 및 방법: 파킨슨씨병 환자(IPD) 15명(남/녀:8/7, 63.3$\pm$4.8세)과 정상인 8명(남/녀:2/6, 61.4$\pm$16.5세) 에서 I-123 IPT(259MBq)를 주사한 후 2시간에 SPECT 영상을 얻었고 미상핵과 조가비핵의 전, 후부 및 후두엽에 각각 육안적인 방법과 MR Template based Coregistration방법으로 ROI를 설정하였다. MR Template based Coregistration 방법은 MNI TIMR template을 이용하여 SPECT영상을 voxel based intensity matching 방법으로 coregistration한 후midthalamic level에서 striatum의 경계를 따라 설정된 ROI를 이용하였다. 육안적인 방법은 striatal uptake가 가장 높은 level에서 3개의 ROI template를 striatum에 위치하였다. 두 방법으로 SBR과 nnterior/posterior ratio of SBR(APR)를 측정하였고 정상인과 파킨슨씨병 환자에서 두 방법을 비교하였다.

  • PDF

Usefulness of Registration in the Evaluation of Parkinson′s Disease (영상 융합하여 분석한 파킨슨씨병 환자영상의 유용성)

  • 주라형;김재승;문대혁;최보영;서태석
    • Progress in Medical Physics
    • /
    • v.14 no.4
    • /
    • pp.268-278
    • /
    • 2003
  • Purpose:The aim of this study was to evaluate the striatal binding ratio, the anterior/posterior ratio and reproducibility using a template based registration method using the standard MR template as a replacement for each patients MR image. Materials and Methods:This study analyzed the 123I IPT SPECT images of 30 patients with IPD, who were subdivided into 17 patients (56.6$\pm$10.8 yr, M/F : 8/9.) with mild IPD, and 13 patients (56.4$\pm$11.1 yr, M/F : 8/5) with severe IPD. In addition, 11 normal controls (57.8$\pm$14.4 yr, M/F : 4/7) were also analyzed. The ROIs were positioned manually in the same slice showing the highest striatal activity using the traditional manual method, whereas those were positioned automatically in a mid striatal slice of the SPECT image coregistered to the standard T1 weighted MR template. Results : The specific binding ratio (SBR) obtained using the template based registration method strongly correlated with those using the manual method in all groups : normal controls (r=0.85, P<0.001), mild IPD (r=0.84, P<0.001) and severe IPD (r=0.7, P=0.01). The SBRs obtained using both methods were significantly different among the three groups (P=0.05) and the SBRs obtained by the template based registration method were higher than those by the manual method (P=0.05) in all three groups. The APRs obtained by the template based registration correlated with those using manual method in only mild IPD (r=0.72, P=0.0). The APRs obtained by the template based registration method were significantly different from the normal controls and those with mild or severe IPD (P<0.05), whereas those obtained using the manual method were not significantly different among the three groups (P>0.1). The reproducibility (rmsCV) of the template based registration method was 7.2% (normal controls:5.2%, mild IPD:4.2%, severe IPD:10.8%), whereas the reproducibility of the manual method was 31% (normal controls:19.7%, mild IPD:21.7%, severe IPD:46.2%). Conclusion:These results show that the use of $^{123}$ I-IPT SPECT for assessing IPD is affected by the methods used to position the striatal ROI. The template based registration method using the standard MR template can be useful in diagnosing IPD and assessing the disease severity with a high reproducibility. Therefore, the template based registration method appears to be a good replacement for the manual method.

  • PDF

A Study of Dopamine Transporter Imaging and Comparison of Noninvasive Simplified Quantitative Methods in Normal Controls and Parkinson's Patients ([I-123]IPT SPECT를 이용한 정상인과 파킨슨 환자의 도파민 운반체의 영상화 및 단순화된 정량분석 방법들의 비교연구)

  • Bong, Jung-Kyun;Kim, Hee-Joung;Im, Joo-Hyuck;Yang, Seoung-Oh;Moon, Dae-Hyuk;Ryu, Jin-Sook;Nam, Ki-Pyo;Cheon, Jun-Hong;Kwon, Soo-Il;Lee, Hee-Kyung
    • The Korean Journal of Nuclear Medicine
    • /
    • v.30 no.3
    • /
    • pp.315-324
    • /
    • 1996
  • The purpose of this study was to compare the specific binding ratio method with model-based methods in estimating the transporter parameter $k_3/k_4$ in normal controls and Parkinson's patients with [I-123]IPT SPECT and to evaluate the usefulness of [I-123]IPT SPECT. $6.5{\pm}1.1$ mCi ($239.0{\pm}40.3$ MBq) of [$^{123}I$]IPT was intravenouly injected as a bolus into six normal controls(age:$45{\pm}13$) and seventeen patients(age:$55{\pm}8$) with Pakinson's disease(PD). The transporter parameter $k_3/k_4$ was derived using the Ichise's graphical method($R_v$) and Lassen's area ratio method($R_A$) for the dynamic IPT SPECT data without blood samples. Then, the relationships between the transporter parameter $R-v,\;R_A$ and the ratio of (BG-OCC)/OCC at 115 minutes were evaluated by linear regression analysis. $R_vs$ by Ichise's graphical method for NC and PD were $2.08{\pm}0.29$ and $0.78{\pm}0.31$, respectively. $R_As$ by Lassen's area ratio method for NC and PD were $1.48{\pm}0.16$ and $0.65{\pm}0.24$, respectively. The correlation coefficients between (BG-OCC)/OCC and $R_v$, (BG-OCC)/OCC and $R_A$, and $R_v$ and $R_A$ were 0.93, 0.90, 0.99 and their corresponding slopes were 0.54, 0.34, and 0.65, respectively. The $R_v$ and $R_A$ of NC were significantly higher than the ones of PD. That is, the $k_3/k_4$ of NC was clearly separated from the one of PD. $k_3/k_4$ showed a good correlation with the ratio of (BG-OCC)/OCC. The results indicate that the noninvasive simplified quantitative methods may be useful to measure the transporter parameter $k_3/k_4$ and the specific binding ratio method can be used for quantitative studies of dopamine transporter with [I-123]IPT SPECT in humans brains.

  • PDF

Evaluation of Striatal Dopamine Transporter Density using $[^{123}I]-{\beta}-CIT$ SPECT in Schizophrenic Patients Treated with Olanzapine: Pilot study (정신분열병 환자에서 Olanzapine 사용 전후의 $[^{123}I]-{\beta}-CIT$ SPECT를 이용한 Dopamine Transporter 변화: 준비조사)

  • Kim, Chul-Eung;Moon, Hey-Won;Choe, Won-Siek;Kim, Chang-Ho;Chi, Dae-Yoon
    • The Korean Journal of Nuclear Medicine
    • /
    • v.36 no.4
    • /
    • pp.224-231
    • /
    • 2002
  • Purpose: This pilot study was performed to understand the pharmacological effect of olanzapine, an atypical antipsychotic agent, on dopamine transporter in schizophrenic patients. Materials and Methods: Six patients (3 male, 3 female) with schizophrenia, who had not taken any psychotropic drugs for at least four weeks, were studied. Nuclear imaging using $[^{123}I]-{\beta}-CIT$ SPECT was obtained before and after 4-week treatment with olanzapine. Analysis of ROI on the striatum, caudate nucleus, and putamen was performed. Results: Post-treatment uptake was significantly increased in all the ROIs compared with pre-treatment uptake. Conclusion: This preliminary study with the small number of schizophrenic patients suggested an increase in uptake of dopamine transporter in the striatum, caudate nucleus, and putamen after 4-week treatment with olanzapine, which warrants a large-scaled controlled study to confirm the current findings.

A study on Broad Quantification Calibration to various isotopes for Quantitative Analysis and its SUVs assessment in SPECT/CT (SPECT/CT 장비에서 정량분석을 위한 핵종 별 Broad Quantification Calibration 시행 및 SUV 평가를 위한 팬텀 실험에 관한 연구)

  • Hyun Soo, Ko;Jae Min, Choi;Soon Ki, Park
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.26 no.2
    • /
    • pp.20-31
    • /
    • 2022
  • Purpose Broad Quantification Calibration(B.Q.C) is the procedure for Quantitative Analysis to measure Standard Uptake Value(SUV) in SPECT/CT scanner. B.Q.C was performed with Tc-99m, I-123, I-131, Lu-177 respectively and then we acquired the phantom images whether the SUVs were measured accurately. Because there is no standard for SUV test in SPECT, we used ACR Esser PET phantom alternatively. The purpose of this study was to lay the groundwork for Quantitative Analysis with various isotopes in SPECT/CT scanner. Materials and Methods Siemens SPECT/CT Symbia Intevo 16 and Intevo Bold were used for this study. The procedure of B.Q.C has two steps; first is point source Sensitivity Cal. and second is Volume Sensitivity Cal. to calculate Volume Sensitivity Factor(VSF) using cylinder phantom. To verify SUV, we acquired the images with ACR Esser PET phantom and then we measured SUVmean on background and SUVmax on hot vials(25, 16, 12, 8 mm). SPSS was used to analyze the difference in the SUV between Intevo 16 and Intevo Bold by Mann-Whitney test. Results The results of Sensitivity(CPS/MBq) and VSF were in Detector 1, 2 of four isotopes (Intevo 16 D1 sensitivity/D2 sensitivity/VSF and Intevo Bold) 87.7/88.6/1.08, 91.9/91.2/1.07 on Tc-99m, 79.9/81.9/0.98, 89.4/89.4/0.98 on I-123, 124.8/128.9/0.69, 130.9, 126.8/0.71, on I-131, 8.7/8.9/1.02, 9.1/8.9/1.00 on Lu-177 respectively. The results of SUV test with ACR Esser PET phantom were (Intevo 16 BKG SUVmean/25mm SUVmax/16mm/12mm/8mm and Intevo Bold) 1.03/2.95/2.41/1.96/1.84, 1.03/2.91/2.38/1.87/1.82 on Tc-99m, 0.97/2.91/2.33/1.68/1.45, 1.00/2.80/2.23/1.57/1.32 on I-123, 0.96/1.61/1.13/1.02/0.69, 0.94/1.54/1.08/0.98/ 0.66 on I-131, 1.00/6.34/4.67/2.96/2.28, 1.01/6.21/4.49/2.86/2.21 on Lu-177. And there was no statistically significant difference of SUV between Intevo 16 and Intevo Bold(p>0.05). Conclusion Only Qualitative Analysis was possible with gamma camera in the past. On the other hand, it's possible to acquire not only anatomic localization, 3D tomography but also Quantitative Analysis with SUV measurements in SPECT/CT scanner. We could lay the groundwork for Quantitative Analysis with various isotopes; Tc-99m, I-123, I-131, Lu-177 by carrying out B.Q.C and could verify the SUV measurement with ACR phantom. It needs periodic calibration to maintain for precision of Quantitative evaluation. As a result, we can provide Quantitative Analysis on follow up scan with the SPECT/CT exams and evaluate the therapeutic response in theranosis.

Efficacy of I-123/I-131 Metaiodobenzylguanidine Scan as A Single Initial Diagnostic Modality in Pheochromocytoma: Comparison with Biochemical Test and Anatomic Imaging (갈색세포종의 초기 진단에서 I-123/I-131 Metaiodobenzylguanidine 스캔의 단일 검사로써의 진단 성능: 생화학적 검사, 해부학적 영상과 비교)

  • Moon, Eun-Ha;Lim, Seok-Tae;Jeong, Young-Jin;Kim, Dong-Wook;Jeong, Hwan-Jeong;Sohn, Myung-Hee
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.43 no.5
    • /
    • pp.436-442
    • /
    • 2009
  • Purpose: We underwent this study to evaluate the diagnostic potential of I-123/I-131 metaiodobenzylguanidine (MIBG) scintigraphy alone in the initial diagnosis of pheochromocytoma, compared with biochemical test and anatomic imaging. Materials & Methods: Twenty two patients (M:F=13:9, Age: $44.3{\pm}\;19.3$ years) having the clinical evaluation due to suspicious pheochromocytoma received the biochemical test, anatomic imaging modality (CT and/or MRI) and I-123/I-131 MIBG scan for diagnosis of pheochromocytoma, prior to histopathological confirmation. MIBG scans were independently reviewed by 2 nuclear medicine physicians. Results: All patients were confirmed histopathologically by operation or biopsy (incisional or excisonal). In comparison of final diagnosis and findings of each diagnostic modality, the sensitivities of the biochemical test, anatomic imaging, and MIBG scan were 88.9%, 55.6%, and 88.9%, respectively. And the specificities of the biochemical test, anatomic imaging, and MIBG scan also were 69.2%, 69.2%, and 92.3%, respectively. MIBG scan showed one false positive (neuroblastoma) and one false negative finding. There was one patient with positive MIBG scan and negative findings of the biochemical test, anatomic imaging. Conclusion: Our data suggest that I-123/I-131 MIBG scan has higher sensitivity, specificity, positive predictive value, negative predictive value and accuracy than those of biochemical test and anatomic imaging. Thus, we expect that MIBG scan is e tectively used for initial diagnosis of pheochromocytoma alone as well as biochemical test and anatomic imaging.

Analysis of Air Discharge and Disused Air Filters in Radioisotope Production Facility

  • Kim, Sung Ho;Lee, Bu Hyung;Kwon, Soo Il;Kim, Jae Seok;Kim, Gi-sub;Park, Min Seok;Jung, Haijo
    • Progress in Medical Physics
    • /
    • v.27 no.3
    • /
    • pp.156-161
    • /
    • 2016
  • When air discharged from a radioisotope production facility is contaminated with radiation, the public may be exposed to radiation. The objective of this study is to manage such radiation exposure. We measured the airborne radioactivity concentration at a 30 MeV cyclotron radioisotope production facility to assess whether the exhaust gas was contaminated. Additionally, we investigted the radioactive contamination of the air filter for efficient air purification and radiation safety control. To measure the airborne radiation concentration, specimens were collected weekly for 4 h after the beginning of the radioisotope production. Regarding the air purifier, five specimens were collected at different positions of each filter-pre-filter, high-efficiency particulate air filter, and charcoal filter-installed in the cyclotron production room. The concentrations of F-18, I-123, I-131, and Tl-201 generated in the radioiodine production room were $13.5Bq/m^3$, $27.0Bq/m^3$, $0.10Bq/m^3$, and $11.5Bq/m^3$, respectively; the concentrations of F-18, I-123, and I-131 produced in the radioisotope production room were $0.05Bq/m^3$, $16.1Bq/m^3$, and $0.45Bq/m^3$, correspondingly; and those of F-18, I-123, I-131, and Tl-201 generated in the accelerator room were $2.07Bq/m^3$, $53.0Bq/m^3$, $0.37Bq/m^3$, and $0.15Bq/m^3$, respectively. The maximum radiation concentration of I-123 generated in the radioiodine production room was 1,820 Bq/g, which can be disposed after 2 days. The maximum radiation concentration of Tl-202 generated in the radioisotope production room was 205 Bq/g, and this isotope must be stored for 53 days. The I-123 generated in the radioiodine production room had a maximum concentration of 1,530 Bq/g and must be stored for 2 days. The maximum radiation concentration of Na-22 generated in the radioisotope production room was 0.18 Bq/g and this isotope must be disposed after 827 days. To manage the exhaust, the efficiency of air purification must be enhanced by selecting an air purifier with a long life and determining the appropriate replacement time by examining the differential pressure through systematic measurements of the airborne radiation contamination level.

Radiopharmaceuticals for Neurotransmitter Imaging (뇌 신경물질 운반체 영상용 방사성의약품)

  • Oh, Seung-Jun
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.41 no.2
    • /
    • pp.118-131
    • /
    • 2007
  • Neurotransmitter imaging with radiopharmaceuticals plays major role for understanding of neurological and psychiatric disorders such as Parkinson's disease and depression. Radiopharmaceuticals for neurotransmitter imaging can be divided to dopamine transporter imaging radiopharmaceuticals and serotonin trnasporter imaging radiopharmaceuticals. Many kinds of new dopamine transporter imaging radiopharmcaeuticals has a tropane ring and they showed different biological properties according to the substituted functional group on tropane ring. After the first clinical trials with $[^{123}I]{\beta}-CIT$, alkyl chain substituent introduced to tropane ring amine to decrease time for imaging acquisition and to increase selectivity. From these results, $[^{123}I]PE2I$, [18F]FE-CNT, $[^{123}I]FP-CIT$ and $[^{18}F]FP-CIT$ were developed and they showed high uptake on the dopamine transporter rich regions and fast peak uptake equilibrium time within 4 hours after injection. $[^{11}C]McN$ 5652 was developed for serotonin trnasporter imaging but this compound showed slow kinetics and high background radioactivity. To overcome these problems, new diarylsulfide backbone derivatives such as ADAM, ODAM, AFM, and DASB were developed. In these candidates, $[^{11}C]AFM$ and $[^{11}C]DASB$ showed high binding affinity to serotonin transporter and fast in vivo kinetics. This paper gives an overview of current status on dopamine and serotonin transporter imaging radiopharmaceuitcals and the development of new lead compounds as potential radiopharmaceuticals by medicinal chemistry.