• 제목/요약/키워드: $\underline{catalyst}$

검색결과 4건 처리시간 0.017초

Cu-Cu 접착부의 고온고습 내구성에 미치는 경화제 및 촉매제의 영향 (Effects of Hardeners and Catalysts on the Reliability of Copper to Copper Adhesive Joint)

  • 민경은;김해연;방정환;김종훈;김준기
    • 한국재료학회지
    • /
    • 제21권5호
    • /
    • pp.283-287
    • /
    • 2011
  • As the performance of microelectronic devices is improved, the use of copper as a heat dissipation member is increasing due to its good thermal conductivity. The high thermal conductivity of copper, however, leads to difficulties in the joining process. Satisfactory bonding with copper is known to be difficult, especially if high shear and peel strengths are desired. The primary reason is that a copper oxide layer develops rapidly and is weakly attached to the base metal under typical conditions. Thus, when a clean copper substrate is bonded, the initial strength of the joint is high, but upon environmental exposure, an oxide layer may develop, which will reduce the durability of the joint. In this study, an epoxy adhesive formulation was investigated to improve the strength and reliability of a copper to copper joint. Epoxy hardeners such as anhydride, dihydrazide, and dicyandiamide and catalysts such as triphenylphosphine and imidazole were added to an epoxy resin mixture of DGEBA and DGEBF. Differential scanning calorimetry (DSC) analyses revealed that the curing temperatures were dependent on the type of hardener rather than on the catalyst, and higher heat of curing resulted in a higher Tg. The reliability of the copper joint against a high temperature and high humidity environment was found to be the lowest in the case of dihydrazide addition. This is attributed to its high water permeability, which led to the formation of a weak boundary layer of copper oxide. It was also found that dicyandiamide provided the highest initial joint strength and reliability while anhydride yielded intermediate performance between dicyandiamide and dihydrazide.

실리콘 폴리머의 비닐그룹에 대한 가교제의 Si-H 비율이 폴리비닐실록산 치과용 인상재의 물성에 미치는 영향 (Effects of the Variation of Silyl Hydride-to-Vinyl Ratios in Dental Polyvinylsiloxane Impression Materials)

  • 주동현;정영화;송호준;최창남;박영준
    • Elastomers and Composites
    • /
    • 제44권2호
    • /
    • pp.150-155
    • /
    • 2009
  • 본 연구는 폴리비닐실록산 치과용 고무인상재의 조성에서 실리콘 프리폴리머 내 비닐그룹에 대한 가교제내 Si-H 그룹의 함량비 차이가 물성에 미치는 영향을 평가하였다. SiH/Vinyl 비가 1.6으로 가교제 함량이 낮은 $\underline{C6}$군(Cross-linker $\underline{6}$ parts 함유)은 인장강도가 실험군 중 가장 높았으나 경화속도가 너무 느렸고, SiH/Vinyl 비가 3.2인 C12군은 기계적 성질은 좋았으나 경화가 너무 빠르게 진행되어 조작이 용이하지 않은 단점을 보였다. 그러나 C14군은 가교제 함량이 더 낮은 실험군들에 비해 낮은 인장강도를 보였으며, C16군은 경화반응이 오히려 더 지연됨을 보여 과다한 가교제 첨가는 기계적 성질과 조작성에 불리한 영향을 미침을 알 수 있었다.

탄소 나노튜브에 담지된 Pt, Pt-Ru 및 Pt-CeO2 메탄올 연료전지 촉매의 특성 (Characteristics of Pt, Pt-Ru and Pt-CeO2 Catalysts Supported on Carbon Nanotubes for Methanol Fuel Cell)

  • 황귀성;이임열
    • 한국재료학회지
    • /
    • 제21권3호
    • /
    • pp.138-143
    • /
    • 2011
  • Nanosized Pt, Pt-Ru and Pt-$CeO_2$ electrocatalysts supported on acid-treated carbon nanotube (CNT) were synthesized by microwave-assisted heating of polyol process using $H_2Cl_6Pt{\cdot}6H_2O$, $RuCl_3$, $CeCl_3$ precursors, respectively, and were characterized by XRD and TEM. And then the electrochemical activity of methanol oxidation for catalyst/CNT nanocomposite electrodes was investigated. The microwave assisted polyol process produced the nano-sized crystalline catalysts particles on CNT. The size of Pt supported on CNT was 7~12 nm but it decreased to 3~5 nm in which 10wt% sodium acetate was added as a stabilizer during the polyol process. This fine Pt catalyst particles resulted in a higher current density for Pt/CNT electrode. It was also found that 10 nm size of PtRu alloys were formed by polyol process and the onset potential decreased with Ru addition. Cyclic voltammetry analysis revealed that the $Pt_{75}Ru_{25}/CNT$ electrode had the highest electrochemical activity owing to a higher ratio of the forward to reverse anodic peak current. And the chronoamperemetry test showed that $Pt_{75}Ru_{25}$ catalyst had a good catalyst stability. The activity of Pt was also found to be improved with the addition of $CeO_2$.

Polymer Electrolyte Membrane Fuel Cells용 Pt/C 캐소드 전극촉매 특성에 미치는 반응 온도 (Various Temperatures Affecting Characteristics of Pt/C Cathode Catalysts for Polymer Electrolyte Membrane Fuel Cells)

  • 유성열;강석민;이진아;이충균;류호진
    • 한국재료학회지
    • /
    • 제21권3호
    • /
    • pp.180-185
    • /
    • 2011
  • This study is aimed to increase the activity of cathodic catalysts for PEMFCs(Polymer Electrolyte Membrane Fuel Cells). we investigated the temperature effect of 20wt% Pt/C catalysts at five different temperatures. The catalysts were synthesized by using chemical reduction method. Before adding the formaldehyde as reducing agent, process was undergone for 2 hours at the room temperature (RT), $40^{\circ}C$, $60^{\circ}C$, $80^{\circ}C$ and $100^{\circ}C$, respectively. The performances of synthesize catalysts are compared. The electrochemical oxygen reduction reaction (ORR) was studied on 20wt% Pt/C catalysts by using a glassy carbon electrode through cyclic voltammetric curves (CV) in a 1M H2SO4 solution. The ORR specific activities of 20wt% Pt/C catalysts increased to give a relative ORR catalytic activity ordering of $80^{\circ}C$ > $100^{\circ}C$ > $60^{\circ}C$ > $40^{\circ}C$ > RT. Electrochemical active surface area (EAS) was calculated with cyclic voltammetry analysis. Prepared Pt/C (at $80^{\circ}C$, $100^{\circ}C$) catalysts has higher ESA than other catalysts. Physical characterization was made by using X-ray diffraction (XRD) and transmission electron microscope (TEM). The TEM images of the carbon supported platinum electrocatalysts ($80^{\circ}C$, $100^{\circ}C$) showed homogenous particle distribution with particle size of about 2~3.5 nm. We found that a higher reaction temperature resulted in more uniform particle distribution than lower reaction temperature and then the XRD results showed that the crystalline structure of the synthesized catalysts are seen FCC structure.