• Title/Summary/Keyword: $\pi$-bonding

Search Result 100, Processing Time 0.031 seconds

MOLECULAR ORIENTATIONS OF INTRAMOLECULAR CHARGE TRANSFER AROMATIC MOLECULES IN THE ORGANIZED MEDIA

  • Shin, Dong Myung
    • Journal of Photoscience
    • /
    • v.1 no.1
    • /
    • pp.53-59
    • /
    • 1994
  • Molecular orientation and polarity of solubilization site of dipolar azobenzenes solubilized in micellar solutions are discussed. The polarity of solubilization was estimated by using Taft $\pi$$^*$ scale with linear solvation energy relationship, $\Delta$E=$\Delta$E$_0$ + S($\pi$$^*$ + d$\delta$)+a$\alpha$ + b$\beta$. Hydrogen bonding effects were taken into account for the estimation of micropolarity. The polarity that azobenzenes experienced in the miceliar solutions was close to water which represented that the azobenzenes were mostly solubilized at the interface. For the orientations of azobenzenes were concerned, the nitro group of NPNOH faced the interface and the hydroxy group of NPNO$^-$ located at the interfacial area.

  • PDF

LONGITUDINAL WAVES, STORING AND AMPLIFYING CAPABILITY OF INFORMATION IN WATER MOLECULES AND QUANTUM RESONANCE SPECTROMETER

  • Oh, Hung-Kuk
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1996.10b
    • /
    • pp.18-28
    • /
    • 1996
  • The outer-most electrons of metal atoms and the remaining valence electrons of any molecular atoms make three-dimensional crystallizing $\pi$-bondings. The rotating electrons on the three-dimensional crystallizing $\pi$-bonding orbitals of atoms make $\pi$-far infrared rays. Longitudinal wave is a propagation of a bundle of $\pi$-far infrared rays, which are produced by a dynamic impact on a solid bar. The $\pi$-far infrared rays make three-dimensional crystallizing $\pi$-bondings in the material, which reproduce the same $\pi$-far infrared rays. If a current signal is input into water molecules under a given electric potential field with $\pi$-far infrared rays (input information), the signal can be amplified because the $\pi$-far infrared rays make the $\pi$-bondings, which reduce electric resistance. The three-dimensional crystallizing $\pi$-bondings can induce normal electrons to move from one orbital to next one with a aid of potential electric field. Quantum Resonance Spectrometer is composed of tesla coil absorbing $\pi$-far infrared rays, tesla coil emitting varying electromagnetic waves signal generator, signal storage, human body amplifier, signal analyzer and data indicator. The absorbing tesla coil making varying magnetic field and downward and upward electric field, which resonates the $\pi$-far infrared rays coming out from specimen and absorbs them. The modulated current signal from the input square signal can generate and emit varying electromagnetic waves from the tesla coil. The varying electro-magnetic waves make the three-dimensional crystallizing $\pi$-bondings and the $\pi$-far infrared rays in the water molecules.

  • PDF

Electronic Structure and Bonding in the Ternary Silicide YNiSi3

  • Sung, Gi-Hong;Kang, Dae-Bok
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.3
    • /
    • pp.325-333
    • /
    • 2003
  • An analysis of the electronic structure and bonding in the ternary silicide YNiSi₃is made, using extended Huckel tight-binding calculations. The YNiSi₃structure consists of Ni-capped Si₂dimer layers and Si zigzag chains. Significant bonding interactions are present between the silicon atoms in the structure. The oxidation state formalism of $(Y^{3+})(Ni^0)(Si^3)^{3-}$ for YNiSi₃constitutes a good starting point to describe its electronic structure. Si atoms receive electrons from the most electropositive Y in YNiSi₃, and Ni 3d and Si 3p states dominate below the Fermi level. There is an interesting electron balance between the two Si and Ni sublattices. Since the ${\pi}^*$ orbitals in the Si chain and the Ni d and s block levels are almost completely occupied, the charge balance for YNiSi₃can be rewritten as $(Y^{3+})(Ni^{2-})(Si^{2-})(Si-Si)^+$, making the Si₂layers oxidized. These results suggest that the Si zigzag chain contains single bonds and the Si₂double layer possesses single bonds within a dimer with a partial double bond character. Strong Si-Si and Ni-Si bonding interactions are important for giving stability to the structure, while essentially no metal-metal bonding exists at all. The 2D metallic behavior of this compound is due to the Si-Si interaction leading to dispersion of the several Si₂π bands crossing the Fermi level in the plane perpendicular to the crystallographic b axis.

Development of New Cancer Therapy and Its Physics

  • Oh, Hung-Kuk;Jeong, Jin-Ha
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 2001.05a
    • /
    • pp.147-155
    • /
    • 2001
  • Nasucon lamp and Russian ones, which are coated with some special materials on the glass bulb, gave good clinical results for a cancer therapy. They are experimentally studied with Automatic Bioelectric Response Recorder on the six placements of the electrodes (two feet, two hands and two foreheads). They reduced the current rather than the control (natural) state. However infrared lamp and Chinese God light did not reduced the value current. Hemoglobin in blood. Brown gas, Ti$_3$SiC$_2$ and Nasucon have planar crystallizing $\pi$-bonding bonding layer and covalent bonding one in sequence commonly and thus the alternating magnetic fields are protected. Nasucon lamp and Russian ones utilized electric bulbs in order to generate alternating magnetic fields and to produce absorbing force.

  • PDF

Underground Transmission Cable Sheath Voltage Analysis Using EMTP (EMTP를 이용한 송전케이블 시스전압 분석)

  • Oh, Dong-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2000.07a
    • /
    • pp.428-430
    • /
    • 2000
  • This paper describes under-ground transmission cable sheath voltage by using EMTP and proposes a new design method for calculating cable sheath voltage in steady state. The cross bonding system of power cable is modeled on ${\pi}$ equivalent circuit and the sheath voltage(current) of cable can be analyzed with comparing to conventional method.

  • PDF

Development of Real-Time COF Film Complex Inspection System using Color Image (컬러영상을 이용한 실시간 COF 필름 복합 검사시스템 개발)

  • Kim, Yong-Kwan;Lee, In Hwan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.10
    • /
    • pp.112-118
    • /
    • 2021
  • In this study, an inspection method using a color image is proposed to conduct a real-time inspection of covalent organic framework (COF) films to detect defects, if any. The COF film consists of an upper pattern SR and a lower PI. The proposed system detects the defects of more than 20 ㎛ on the SR surface owing to the characteristics of the pattern, whereas on the PI surface, it detects defects of more than 4 ㎛ by utilizing a micro-optical system. In the existing system, it is difficult for the operator to conduct a full inspection through a high-performance microscope. The proposed inspection algorithm performs the inspection by separating each color component using the color contrast of the pattern on the SR side, and on the PI surface it inspects the bonding state of the mounted chip. As a result, it is possible to confirm the exact location of the defects through the SR and PI surface inspections in the implemented inspection.

Effects of the Magnetic Part of The Breit Term on Bonding: Model Calculations with Small Diatomic Molecules

  • Ryu, Seol;Kyoung K. Baeck;Han, Yeong Gyu;Lee, Yun Seop
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.9
    • /
    • pp.969-974
    • /
    • 2001
  • Model calculations for small molecules Li2, F2, LiF and BF have been performed at the Dirac-Fock level of theory using Dirac-Coulomb and Dirac-Coulomb-Magnetic Hamiltonians with various basis sets. In order to understand what may happen when the relativity becomes significant, the value of c, speed of light, is varied from the true value of 137.036 a.u. to 105 (nonrelativistic case) and also to 50 and 20 a.u. (exaggerated relativistic cases). Qualitative trends are discussed with special emphasis on the effect of the magnetic part of the Breit interaction term. The known relativistic effects on bonding such as the bond length contraction or expansion are demonstrated in this model study. Total energy, $\pi-orbital$ splitting, bond length, bond dissociation energy and dipole moment are calculated, and shown to be modified in a uniform direction by the effect of the magnetic term. Inclusion of the magnetic term raises the total energy, increases the bond length, reduces the $\pi-orbital$ splitting, increases the bond dissociation energy, and mitigates the changes in dipole moment caused by the Dirac term.

PDMS-based pixel-wall bonding technique for a flexible liquid crystal display (플렉서블 액정 디스플레이를 위한 PDMS 기반 pixel-wall bonding 기술)

  • Kim, Young-Hwan;Park, Hong-Gyu;Oh, Byeong-Yun;Kim, Byoung-Yong;Paek, Kyeong-Kap;Seo, Dae-Shik
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.04a
    • /
    • pp.42-42
    • /
    • 2008
  • Considerable attention has been focused on the applications of flexible liquid crystal (LC)-based displays because of their many potential advantages, such as portability, durability, light weight, thin packaging, flexibility, and low power consumption. To develop flexible LCDs that are capable of delivering high-quality moving images, like conventional glass-substrate LCDs, the LC device structure must have a stable alignment layer of LC molecules, concurrently support uniform cell gaps, and tightly bind two flexible substrates under external tension. However, stable LC molecular alignment has not been achieved because of the layerless LC alignment, and consequently high-quality images cannot be guaranteed. To solve these critical problems, we have proposed a PDMS pixel-wall based bonding method via the IB irradiation was developed for fasten the two substrates together strongly and maintain uniform cell gaps. The effect of the IB irradiation on PDMS with PI surface was also evaluated by side structure configuration and a result of x-ray photoelectron spectroscopic analysis of PDMS interlayer as a function of binder with substrates. large number of PDMS pixel-walls are tightly fastened to the surface of each flexible substrate and could maintain a constant cell gap between the LC molecules without using any other epoxy or polymer. To enhance the electro-optical performance of the LC device, we applied an alignment method that creates pretilt angle on the PI surface via ion beam irradiation. Using this approach, our flexible LCDs have a contrast ratio of 132:1 and a response time of about 15 ms, resulting in highly reliable electro-optical performance in the bent state, comparable to that of glass-substrate LCDs.

  • PDF

Electronic Structure and Chemical Bonding of La7Os4C9 (La7Os4C9의 전자구조와 화학결합)

  • Kang, Dae-Bok
    • Journal of the Korean Chemical Society
    • /
    • v.53 no.3
    • /
    • pp.266-271
    • /
    • 2009
  • In the recently synthesized rare earth transition metal carbide $La_7O_{s4}C_9$ one finds one-dimensional organometallic $[O_{s4}C_9]^{21-}$ polymers embedded in a $La^{3+}$ ionic matrix. The electronic structure of the polymeric $[O_{s4}C_9]^{21-}$ chain was investigated by density of states (DOS) and crystal orbital overlap population (COOP), using the extended Huckel algorithm. A fragment molecular orbital analysis is used to study the bonding characteristics of the $C_2$ units in $La_7O_{s4}C_9$ containing $C_2$ units and single C atoms as well. The title compound contains partially filled Os and carbon bands leading to metallic conductivity. As the observed distances already indicated, the calculations show extensive Os-C interactions. The C-C bond distance in the diatomic $C_2$ units ($d_{C-C}$=131 pm) in the solid is significantly increased relative to $${C_2}^{2-}$$ or acetylene, because antibonding $1{\pi}_g$ orbitals are partially filled by the Os-$C_2(1\;{\pi}_g)$ bonding contribution found at and below the Fermi level.